Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мультивибратор на транзисторах




 

Основное отличие мультивибратора от триггера состоит в замене резисторов положительных обратных связей на конденсаторы. Мультивибратор имеет два устойчивых состояния, но они меняются не под действием входных сигналов, а под действием сигналов через положительные обратные связи. Мультивибратор не имеет внешних входов. Это автоколебательное устройство. Схема мультивибратора представлена на рис.160, диаграммы работы - на рис.161.

Описание работы схемы. Примем за начальное состояние схемы ситуацию, когда транзистор VT1 - открыт, а VT2 - закрыт. При этом конденсатор С1 заряжен через Rк2(Rк2<<Rб). VT1 поддерживается в открытом состоянии за счет тока через Rб1 и базу VT1. Конденсатор С2 заряжается через Rб2 и открытый VT1. Полярность напряжения на С2 для этого процесса показана на схеме в скобках. Когда напряжение на С2 достигнет значения»0,6В, то к переходу Б-Э VT2 будет приложено положительное напряжение, открывающее этот переход. Переход Б-Э является диодом. Итак, VT2 открывается и напряжение на С1 через открывшийся VT2 прикладывается в обратном направлении к переходу Б-Э VT1, VT1 - закрывается. На этом заканчивается первый этап времени 0-t1. На втором этапе t1-t2 напряжение на конденсаторе С1 медленно изменяется, происходит разряд С1 по цепи Rб1, К-Э VT2. Одновременно конденсатор С2 быстро заряжается через RК1 и базовую цепь VT2 до напряжения питания +Uп, поддерживая VT2 в открытом состоянии. По окончании заряда С2 (раньше момента t2) открытое состояние VT2 поддерживается цепью через Rб2. Когда напряжение на конденсаторе

 
 

 

 

 
 

p-n перехода область объемного заряда – рис.1. Этот объемный заряд образует потенциальный барьер. Энергия носителей зарядов оказывается недостаточной, чтобы преодолеть этот барьер, поэтому их диффузия прекращается.

Если к полупроводниковому диоду приложить внешнее напряжение так, чтобы его положительный потенциал присоединен к p-слою, то дырки и электроны будут как бы отталкиваются источником внешнего напряжения

 

 

в сторону р-n перехода. Потенциальный барьер уменьшается, переход основных носителей зарядов через границу (электронов из n-слоя и дырок из p-слоя) и их взаимная компенсация возрастают, следовательно, через диод будет протекать ток. Источник будет поставлять в n-слой новые электроны, а в p-слое создавать новые дырки.

При обратном знаке напряжения электроны притягиваются к положительному потенциалу источника, а дырки - к отрицательному, потенциальный барьер в области p-n перехода увеличивается, переход зарядов через границу почти прекращается, ток через диод очень мал. Этот ток обусловлен тепловым разрушением ковалентных связей в обоих слоях и образованием пар электрон-дырка. Неосновные носители (электроны в p-слое и дырки в n-слое) имеют такой знак заряда, который способствует их прохождению через переход.

Полупроводниковый диод – это своеобразный конденсатор: области n и p можно рассматривать как обкладки конденсатора, а p-n переход как изолятор между обкладками. Различают диффузионную (при прямом приложенном напряжении) и барьерную (при обратном напряжении) емкости диода. Емкость полупроводникового диода это бесплатное приложение к его основному свойству к односторонней проводимости. Во многих случаях это свойство является вредным, т.к. ухудшает работу диода на высоких частотах, в импульсных режимах и обуславливает его инерционность.

Изображение диода на электрической схеме показано на рис. 2. Вывод p-слоя называется анодом (А). Вывод n-слоя называется катодом (К).

Включение диода в простейшую электрическую цепь показано на рис. 3, 4. На рис.3 диод является проводником, поэтому в цепи должен быть элемент, ограничивающий ток. Таким элементом является резистор Rн. Ток через него равен: I=(U - Uпр)/Rн.Uпр»0, поэтому I=U/Rн; URн=IRн=U.

При обратном включении диода через него протекает незначительный обратный ток. Для диодов на малые токи обратный ток может составлять десятки нА, у больших диодов - десятки mА. Схема при обратном включении диода представлена на рис. 4. Для нее U=U+Uобр, U=Iобр×Rн»0, т.к. Iобр»0, поэтому U=Uобр.

Часто диод включен в схему, где приложенное напряжение является переменным. Виды этих напряжений:

1. Синусоидальное, показано на рис. 5.

2. Прямоугольное, показано на рис.6

3. Треугольное.

4. Экспоненциальное.

 

напряжение. Например, это выпрямленное отфильтрованное напряжение. Для схемы можно записать уравнение: Uпит=U+Uст; Uст=Uн. Условие нормальной работы схемы: Uст<Uпит.min. Rб -баластное сопротивление, на котором падает разница между Uпит и Uст. Наличие Rб в схеме обязательно. Выбор Rб выполняется на основе следующих уравнений:

I1=Iст+Iн;

Iн=Uст/Rн; Iн.max=Uст/Rн.min.

Для худшего случая, когда ток нагрузки равен Iн.max:

I1=Iн.max+Iст.min.

Для стабилитрона Iст.min величина заданная. Rб рассчитывается по уравнению:

Rб=URб/I1=(Uпит.min-Uст)/I1.

Отсюда получаем:

Rб=(Uпит.min-Uст)/(Iн.max+Iст.min).

 

В этой схеме нельзя получить ток нагрузки больше Iст.max, если этот ток меняется в широких пределах от 0 при х.х. до max. Если ток нагрузки величина постоянная, то схема стабилизатора всегда работоспособна. Однако колебания Uпит будут приводить к изменению тока через стабилитрон и эти изменения не должны превышать диапазона Iст.min...Iст.max. В схеме стабилизатора возможно последовательное включение стабилитронов для получения нужного напряжения стабилизации Uст=Uст1+Uст2. Параллельное включение стабилитронов не применяется.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 714; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.