КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Бета-распад
Условие распада. Масса ядра с данным числом нуклонов зависит от его протон-нейтронного состава. Только одной комбинации протонов и нейтронов отвечает ядро с наименьшей массой, т.е. с наибольшей энергией связи. Ядру с любым другим нуклонным составом энергетически выгодно превращение в ядро с оптимальным числом протонов и нейтронов. Самопроизвольные изменения в составе ядер в действительности и происходят, поскольку существует механизм взаимопревращения нуклонов – бета-распад. При бета-распаде протон превращается в нейтрон или нейтрон в протон. В свободном состоянии возможно только самопроизвольное превращение нейтрона в протон, т.к. масса покоя нейтрона на 1,3 МэВ больше массы покоя протона. В ядре все определяется энергией связи. Типы бета-распада. Если исходное ядро имеет избыток нейтронов по сравнению с оптимальным составом ядра того же массового числа А, то оно претерпевает - распад: , (3.16) при котором число протонов в ядре увеличивается на единицу за счет уменьшения на единицу числа нейтронов. При этом из ядра выбрасываются электрон и антинейтрино. Электроны, испускаемые ядрами, называются бета-частицами. Если ядро имеет избыток протонов, то уменьшение их числа на единицу и увеличение на единицу числа нейтронов происходит при -распаде: (3.17) В этом случае ядра испускают позитрон и нейтрино. Процесс часто происходит без испускания позитрона, но с поглощением ядром атомного электрона: (3.18) Здесь - атомный электрон, в отличие от бета-частицы, испускаемой ядром. В этом превращении наиболее вероятен захват электрона с К -оболочки, поэтому процесс называется К -захватом. Соотношение между конкурирующими процессами: -распадом и К-захватом - определяется свойствами распадающегося ядра и продукта распада и может изменяться в пределах от 0 до 1. Энергия распада. Самопроизвольные процессы происходят только с образованием частиц меньшей массы. И здесь надо учитывать массы атомов. Условия -распада и К-захвата: , (3.19) а для -распада: (3.20) Поправка в 2m в последнем соотношении добавляется потому, что при -распаде получается атом с Z-1 электроном и за пределами атома оказывается не только позитрон, но и один атомный электрон. При -распаде в атоме-продукте возникает недостаток одного электрона вследствие возрастания Z на единицу, поэтому масса нейтрального атома получается при учете массы испущенного из ядра электрона. В случае К -захвата баланс атомных электронов устанавливается автоматически. Из соотношений (3.19) и (3.20) видно, что энергетически К -захват более выгоден, чем -распад из-за 2m электронов, эта энергия выделится при аннигиляции позитрона.. Однако К -захват не всегда сопровождает -распад и наиболее вероятен у тяжелых атомов, имеющих малые радиусы электронных К -оболочек. Энергия -распада и К -захвата равна: , (3.21) а -распада: . (3.22) Если же учесть энергию, выделяющуюся при аннигиляции позитрона, то и (3.22) обратится в (3.21). Поскольку при бета-распаде меняется Z ядра, одновременно с изменением энергии связи нуклонов изменяется и энергия связи электронов. Последняя составляющая может оказаться существенной, если мало. Часть энергии бета-распада может пойти на возбуждение ядра-продукта или электронных оболочек атома-продукта. Эта энергия немедленно вслед за бета-распадом освобождается в виде излучения. Атом после К -захвата испускает рентгеновские кванты, возбужденное ядро – гамма-кванты. Остальная энергия либо вся энергия в отсутсвие возбуждения уносится образующимися при бета-распаде тремя частицами: атомом-продуктом, бета-частицей и нейтрино, или двумя частицами: атомом и нейтрино при К -захвате. Распределяется энергия между частицами в соответствии с законами сохранения энергии и импульса. Если частиц две, то любая из них в каждом случае распада получает одну и ту же энергию, если частиц три, то энергия каждой в зависимости от взаимной ориентации импульсов в разных случаях распада может принимать значения от нуля до некоторого максимального значения. Максимальное значение энергии отдачи атома очень мало, так как относительно велика масса атома, и практически вся энергия бета-распада уносится бета-частицей и нейтрино, распределяясь между ними. Регистрация нейтрино нереально, измеряют спектр бета-частиц, или -спектр (см. рисунок 3.7). Рис. 3.7. Бета-спектр (доля бета-частиц на единичный энергетический интервал)
Средняя энергия бета частиц примерно равна 1/3. Нейтрино – нейтральная частица с очень маленькой массой была предложена Паули, а названа так Ферми. Теория. Бета-рапад происходит под действием слабых сил. Слабые процессы развиваются во времени не быстрее, чем за 10-10 с, а время жизни относительно бета-распада обычно намного больше и находится в пределах от долей секунды до многих миллиардов лет. Причин такого замедления бета превращений несколько. Прежде всего скорость бета-распада зависит от энергии бета-распада . Чем меньше эта энергия, тем медленнее идет распад, ибо тем меньше диапазон значений импульсов, которые могут приобрести образующиеся при распаде электрон и нейтрино. Кроме того, процесс бета-распада есть превращение протона в нейтрон или нейтрона в протон, которое происходит в недрах атомных ядер. В составе ядер протоны и нейтроны занимают определенные уровни в нуклонных оболочках. При бета-превращениях ядер с сильно отличающимся числом нейтронов и протонов конечное состояние нуклона, претерпевающего превращение, может сильно отличаться от начального состояния, тогда как вероятность перехода между состояниями определяется перекрытием в пространстве волновых функций конечного и начального состояний. Для различающихся состояний нуклонов в ядре это перекрытие очень мало. Наконец, вероятность бета-распада очень сильно зависит от разницы значений спинов исходного и конечного ядер. Если это различие превышает единицу, то скорость бета-распада сильно снижается. Точно также, скорость распада уменьшается, если волновые функции, описывающие состояние нуклонов исходного и конечного ядер, имеют разную четность, которая определяется четностью орбитального момента нуклона I. Теория дает следующее выражение для вероятности бета-распада атомного ядра в единицу времени ω с испусканием электрона, имеющего импульс p, отнесенной к единичному интервалу шкалы импульсов электрона: , (3.23) где g – константа слабого взаимодействия, ответственного за бета-распад; - квадрат модуля матричного элемента нуклонного перехода, вычисляемый методами квантовой механики и описывающий степень сложности перехода из начального состояния нуклона в конечное после его бета-превращения с учетом изменения спина ядра и четности волновой функции; Е – кинетическая энергия бета-частицы с импульсом p. Интеграл от правой части по всем значения импульсов электрона – от нуля до максимального или, что тоже самое, интеграл по всем энергиям электрона от нуля до Еβ дает вероятность распада в единицу времени ω с испусканием электрона с произвольным импульсом, т.е. вероятность любого бета-распада: (3.24) где - безразмерная часть интеграла по энегии бета-частицы, зависящая от верхнего предела интегрирования. Эта зависимость значительно слабее зависимости от энергии скорости альфа-распада. Гамма-излучение и запаздывающие нуклоны. Бета-распад, сопровождающийся образованием дочернего ядра в основном энергетическом состоянии в каждом случае распада, скорее является редким исключением, чем правилом. Обычно наряду с бета-переходом в основное состояние наблюдаются переходы с образованием нескольких возбужденных состояний ядра-продукта. В тех случаях, когда спины основных состояний материнского и дочернего ядер различаются на несколько единиц , а достаточно высока для образования дочернего ядра в возбужденных состояниях, механические моменты которых имеют малое отличие от спина распадающегося ядра, то дочернее ядро вообще не образуется в основном состоянии. Возбужденные ядра-продукты сразу же вслед за бета-распадом переходят в основные состояния, гавным образом испуская гамма-кванты. Поэтому бета-распад обычно сопровождается гамма-излучением. Возбуждение ядра происходит за счет энергии бета-распада. И только оставшаяся от возбуждения энергия бета-распада распределяется между бета-частицей и нейтрино. Абсолютные значения энергий возбуждения определяется системой энергетических уровней дочерних ядер и величиной и обычно находятся в диапазоне 0,1-3 МэВ. В отдельных случаях энергия возбуждения может быть много больше 3 МэВ, достигая в редких случаях 8-11 МэВ, что сравнимо или больше энергии связи нуклона в ядре. Если энергия возбуждения ядра превышает энергию связи нуклона, то ядро освобождается от избыточной энергии, выбрасывая нуклон, а не гамма-квант. Таким образом, вслед за бета-распадом помимо гамма-квантов испускаться протоны, нейтроны или альфа-частицы. Схема испускания запаздывающих нейтронов. Испускаемые радиоактивными продуктами деления запаздывающие нейтроны используются при регулировании цепной самоподдерживающейся реакции в ядерных реакторах. На рис. 3.8. представлена энергетическая схема, объясняющая появление запаздывающих нейтронов при бета распаде 87Br, образующегося при делении 235U. Рис. 3.8. Схема испускания запаздывающих нейтронов при распаде 87Br.
Примерно в двух случаях из ста бета-распад 87Br сопровождается образованием сильно возбужденного состояния ядра 87Kr с энергией возбуждения 5,8 МэВ. Ядра всех радиоактивных продуктов деления пересыщены нейтронами, поэтому энергия связи последних нейтронов в ядре относительно мала. Кроме того, 86Kr является магическим по нейтронам, так что один нейтрон сверх замкнутой нейтронной оболочки из 50 нейтронов в ядре нуклида 87Kr имеет особенно низкую энергию связи Есв=5,53 МэВ. Следовательно, с уровня 5,8 МэВ возможно испускание нейтрона, что и происходит с образования стабильного 86Kr. При бета-переходах в более низкое возбужденное состояние 87Kr испускаются только гамма-кванты. Помимо 87Br среди продуктов деления известно еще более десятка радиоактивных продуктов, дающих при бета-распаде запаздывающие нейтроны. Гамма-излучение ядер. Фотоны, испускаемые ядрами называются гамма-квантами. Излучение гамма-кванта является основным процессом освобождения ядра от избыточной энергии, если эта энергия не превосходит энергию связи нуклона в ядре. Обычно высвечивание гамма-кванта происходит за время примерно 10-14 с. Переходы между уровнями ядра, мало отличающимися по энергии и имеющими большое различие в значениях механического момента, протекают за относительно большие времена. При большой разнице в механическом моменте между возбужденным и основным уровнемядра обычно происходит несколько последовательных переходов. Но если между основным и возбужденным состояниями с большой разницей спинов нет промежуточных уровней, что означает малое абсолютное значение энергии возбужденного уровня, то соответствующий уровень оказывается долгоживущим или метастабильным. Время перехода между такими состояниями измеряется секундами, часами и даже годами. Ядро в метастабильном возбужденном состоянии и такое же ядро в основном энергетическом состоянии называются изомерами, а метастабильные уровни – изомерными уровнями. Ядерная изомерия. Ядерные изомеры известны как среди стабильных, но преимущественно среди бета-активных нуклидов. В случае стабильного нуклида переход в основное состояние с возбужденного изомерного уровня, образовавшегося в результате ядерной реакции или предшествующего распада, происходит путем испускания гамма-кванта. При этом вещество проявляет только гамма-радиоактивность в соответствии с законом распада. Изомерный возбужденный уровень бета-радиоактивного радионуклида не обязательно обращается в основное состояние с испусканием гамма-кванта, а может претерпевать и независимый бета-распад. Периоды полураспада по отношению как к испусканию гамма-квантов, так и бета-распаду зависят от энергии перехода и, особенно, от разности спинов начального и конечного состояний. Поэтому периоды полураспада радиоактивных изомеров одного и того же нуклида всегда различны. На рис. 3.9. представлены схемы распадов изомеров с указанием у каждого ядерного уровня энергии, спина и четности волновой функции, а у нестабильных изомеров и периода полураспада. Рис. 3.9. Схемы распада изомеров
Ядерные изомеры распределены неравномерно среди нуклидов разных массовых чисел. Наибольшее число ядерных изомеров наблюдается в следующих диапазонах чисел протонов и нейтронов в составе ядер: от 30 до 49, от 69 до 81 и от 111 до 125, т.е. при числах протонов или нейтронов, предшествующих магическим числам 50, 82 и 126. Есть и другие механизмы снятия возбуждения ядра, кроме гамма-излучения. Это выброс из атома электрона преимущественно с наибольшей энергией связи (К-оболочка), а также образование в поле ядра пары электрон-позитрон (если энергия возбуждения ядра больше 1,022 МэВ).
Дата добавления: 2014-01-06; Просмотров: 1914; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |