КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Генеральная и выборочная дисперсия
Для того чтобы охарактеризовать рассеяние значений количественного признака X генеральной совокупности вокруг своего среднего значения, вводят сводную характеристику - генеральную дисперсию. Генеральной дисперсией называют среднее арифметическое квадратов отклонений значений признака генеральной совокупности от их среднего значения . Если все значения , ,..., признака генеральной совокупности объема N различны, то Если же значения признака , ,..., имеют соответственно частоты , ,..., , причем , то Пример 1. Генеральная совокупность задана таблицей распределения: Найти генеральную дисперсию. Решение: Найдем генеральную среднюю: . Найдем генеральную дисперсию: Кроме дисперсии для характеристики рассеяния значений признака генеральной совокупности вокруг своего среднего значения пользуются сводной характеристикой - средним квадратическим отклонением. Генеральным средним квадратическим отклонением (стандартом) называют квадратный корень из генеральной дисперсии: . Для того чтобы охарактеризовать рассеяние наблюдаемых значений количественного признака выборки вокруг своего среднего значения вводят сводную характеристику - выборочную дисперсию. Выборочной дисперсией называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения . Если все значения , ,..., признака выборки объема n различны, то Если же значения признака , ,..., имеют соответственно частоты , ,..., , причем , то . Пример 2. Выборочная совокупность задана таблицей распределения: Найти выборочную дисперсию. Решение: Найдем выборочную среднюю: . Найдем выборочную дисперсию: Кроме дисперсии для характеристики рассеяния значений признака выборочной совокупности вокруг своего среднего значения пользуются сводной характеристикой - средним квадратическим отклонением. Выборочным средним квадратическим отклонением (стандартом) называют квадратный корень из выборочной дисперсии: Вычисление дисперсии, безразлично - выборочной или генеральной, можно упростить, используя следующую теорему. Теорема. Дисперсия равна среднему квадратов значений признака минус квадрат общей средней: . Пример. Найти выборочную дисперсию по данному распределению Решение. Найдем выборочную среднюю: . Найдем среднюю квадратов значений признака: . Искомая дисперсия: . Пусть нам необходимо по данным выборки оценить (приближенно найти) неизвестную генеральную дисперсию . Если в качестве оценки генеральной дисперсии принять выборочную дисперсию, то эта оценка будет приводить к систематическим ошибкам, давая заниженное значение генеральной дисперсии. Объясняется это тем, что, как можно доказать, выборочная дисперсия является смещенной оценкой другими словами, математическое ожидание выборочной дисперсии не равно оцениваемой генеральной дисперсии, а равно . Легко «исправить» выборочную дисперсию так, чтобы ее математическое ожидание было равно генеральной дисперсии. Достаточно для этого умножить на дробь . Сделав это, получим исправленную дисперсию, которую обычно обозначают через : . Исправленная дисперсия является, конечно, несмещенной оценкой генеральной дисперсии. Итак, в качестве оценки генеральной дисперсии принимают исправленную дисперсию . Для оценки же среднего квадратического отклонения генеральной совокупности используют «исправленное» среднее квадратическое отклонение, которое равно квадратному корню из исправленной дисперсии:
17.5 Точность оценки, надёжность. Доверительный интервал
Точечной называют оценку, которая определяется одним числом. Все оценки, рассмотренные выше, - точечные. При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, т.е. приводить к грубым ошибкам. По этой причине при небольшом объеме выборки следует пользоваться интервальными оценками. Интервальной называют оценку, которая определяется двумя числами - концами интервала. Интервальные оценки позволяют установить точность и надежность оценок (смысл этих понятий выясняется ниже). Пусть найденная по данным выборки статистическая характеристика служит оценкой неизвестного параметра . Будем считать постоянным числом (может быть и случайной величиной). Ясно, что тем точнее определяет параметр , чем меньше абсолютная величина разности . Другими словами, если и , то чем меньше , тем оценка точнее. Таким образом, положительное число характеризует точность оценки. Однако статистические методы не позволяют категорически утверждать, что оценка удовлетворяет неравенству ; можно лишь говорить о вероятности , с которой это неравенство осуществляется. Надежностью (доверительной вероятностью) оценки по называют вероятность с которой осуществляется неравенство . Обычно надежность оценки задается наперед, причем в качестве берут число, близкое к единице. Наиболее часто задают надежность, равную 0,95; 0,99 и 0,999. Пусть вероятность того, что , равна : . Заменив неравенство равносильным ему двойным неравенством , или , имеем . Это соотношение следует понимать так: вероятность того, что интервал заключает в себе (покрывает) неизвестный параметр , равна . Доверительным называют интервал , который покрывает неизвестный параметр с заданной надежностью . Метод доверительных интервалов разработал американский статистик Ю. Нейман, исходя из идей английского статистика Р. Фишера.
Дата добавления: 2014-01-06; Просмотров: 32852; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |