Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Распределение молекул по абсолютному значению скорости




Вероятность того, что величина скорости молекулы находится в каких-то пределах, определяется выражением

и не зависит от направления вектора скорости. Поэтому в пространстве скоростей неравенство выделяет шаровой слой, в который попадают точки векторов скоростей. Т.к. объем тонкого шарового слоя имеет вид , то

.

Поэтому подынтегральная функция называется функцией распределения молекул по абсолютным значениям скоростей.

Максимум этой функции соответствует наиболее вероятной скорости:

,

,

.

 

Найдём среднее значение скорости:

.

.

 

Найдём средний квадрат скорости:

.

Поэтому средняя квадратичная скорость совпадает с уже известным выражением.

 

Найдём распределение молекул по кинетической энергии:

.

Используя формулу распределения по скоростям и учитывая, что и, имеем:

.

Поэтому .

 

 

Наиболее вероятная кинетическая энергия соответствует максимуму плотности распределения:

,

.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 344; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.