КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Группировка акционеров по размеру выплаты дивидендов на одну акцию
Приведенные данные не позволяют сравнить распределение акционеров двух районов по размеру дивидендов на одну акцию, так как в этих районах имеется различное число групп акционеров, и кроме того, различны величины интервалов. Необходимо ряды интервалов привести к сопоставимому виду. За основу сравнения возьмем структуру распределения акционеров второго района (как наиболее крупную). Следовательно, по первому району нужно произвести вторичную группировку или перегруппировку акционеров, образовав такое же число групп и с теми же интервалами, как во втором районе. В результате перегруппировки получаем следующие сопоставимые данные, характеризующие распределение акционеров двух районов по размеру дивидендов на одну акцию (табл. 3.2.). Таблица 3.2 Вторичная группировка акционеров по размеру дивидендов на одну акцию (группировка единая)
Анализ сопоставимых данных вторичной группировки позволяет сделать вывод о том, что акционеры второго района имеют более высокие размеры дивидендов (120 руб. и более на одну акцию выплачивают 70%- м акционеров этого района, а в первом районе — только 30%- м акционеров). 3.4. Статистические ряды распределения После определения группировочного признака и границ групп строится ряд распределения. Статистический ряд распределения представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку. Он характеризует состав (структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности. Ряды распределения, построенные по атрибутивным признакам (в порядке возрастания или убывания наблюденных знаний), называются атрибутивными. Примером атрибутивных рядов могут служить распределения населения по полу, занятости, национальности, профессии и т.д. Ряды распределения, построенные по количественному признаку, называются вариационными. Например, распределение населения по возрасту, рабочих — по стажу работы, заработной плате и т.д. Вариационные ряды распределения состоят из двух элементов: вариантов и частот. Числовые значения количественного признака в вариационном ряду распределения называются вариантами. Они могут быть положительными и отрицательными, абсолютными и относительными. Так, при группировке предприятий по результатам хозяйственной деятельности варианты положительные (прибыль) и отрицательные (убыток) числа. Частоты — это численности отдельных вариантов или каждой группы вариационного ряда, т. е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяет число элементов всей совокупности. Частости — это частоты, выраженные в виде относительных величин (долях единиц или процентах). Сумма частостей равна единице или 100%. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений. Вариационные ряды в зависимости от характера вариации подразделяются на дискретные и интервальные. Дискретные вариационные ряды основаны на дискретных (прерывных) признаках, имеющих только целые значения (например, тарифный разряд рабочих, число детей в семье), на дискретных признаках, представленных в виде интервалов; интервальные — на непрерывных признаках (имеющих любые значения, в том числе и дробные). При наличии достаточно большого количества вариантов значений признака первичный ряд является трудно обозримым и непосредственное рассмотрение его не дает представления о распределении единиц по значению признака в совокупности. Поэтому первым шагом в упорядочении первичного ряда является его ранжирование, т. е. расположение всех вариантов в возрастающем (или убывающем) порядке. Например, стаж работы (годы) 22 рабочих бригады характеризуется следующими данными: 2, 4, 5, 5, 6, 6, 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 4, 3, 3, 4, 4, 5 Ранжированный ряд: 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 9, 10, 11. При рассмотрении первичных данных можно видеть, что одинаковые варианты признака у отдельных единиц повторяются (здесь и далее — частота повторений, п — объем изучаемой совокупности). Способы построения дискретных и интервальных рядов различны. Для построения дискретного ряда с небольшим числом вариантов выписываются все встречающиеся варианты значений признака, обозначаемые через хi, а затем подсчитывается частота повторения каждого варианта . Ряд распределения принято оформлять в виде таблицы, состоящей из двух колонок (или строк), в одной из которых приводятся варианты, а в другой — частоты. Построение дискретного вариационного ряда не составляет труда. Для построения ряда распределения непрерывно изменяющихся признаков, либо дискретных, представленных в виде интервалов «от — до», необходимо установить оптимальное число групп (интервалов), на которое следует разбить все единицы изучаемой совокупности. При группировке внутри однокачественной совокупности появляется возможность применения равных интервалов, число которых зависит от вариации признака в совокупности и от количества обследованных единиц. Проиллюстрируем построение интервального вариационного ряда по данным приведенного выше примера распределения рабочих по стажу работы. Для нашего примера, согласно формулы Стерджесса (3.1), при N = 22 число групп n = 5. Зная число групп, определим величину интервала по формуле (3.2): . (3.2) В результате получим следующий ряд распределения рабочих по стажу работы. (= 22): х... 2 – 4 4– 6 6– 8 8 – 10 10 – 12 3 86 32 Как видно из данного распределения, основная масса рабочих имеет стаж работы от 4 до 8 лет. Ряды распределения удобно изучать с помощью графического метода. Контрольные вопросы 1. Что представляют собой первый и второй этапы статистического исследования и каковы их значения? 2. Какие виды сводки вы знаете? Дайте их краткую характеристику. 3. Что называется статистической группировкой и группировочными признаками? 4. В чем сложность выбора группировочного признака? 5. Какие задачи решает статистика при помощи метода группировок? 6. Дайте характеристику типологических, структурных и аналитических группировок. Какие задачи они решают? 7. В чем выражается взаимосвязь вышеуказанных группировок? 8. Какие группировки называются простыми и сложными и в чем преимущества последних? 9. От чего зависит решение вопроса об определении числа групп и границ интервалов между ними? 10. Какие бывают интервалы группировок и как точно обозначить их границы? Приведите примеры. 11. Что называется вторичной группировкой, в каких случаях приходится прибегать к ней и как можно получить новые группы на основании уже имеющихся? 12. Что представляют собой статистические ряды распределения и по каким признакам они могут быть образованы? 13. Как подразделяются вариационные ряды распределения и на каких признаках они основаны? 14. Какова методика построения дискретных и интервальных рядов распределения? Приведите примеры.
Глава 4. Абсолютные и относительные статистические величины 4.1. Абсолютные статистические величины В итоге сводки статистических данных получают обобщающие статистические показатели, в которых отражаются результаты познания количественной стороны массовых общественных явлений. Исходной, первичной формой выражения статистических показателей, отражающих уровень развития явления, служат абсолютные величины. Абсолютными в статистике называются суммарные обобщающие показатели, характеризующие размеры (уровни, объемы) общественных явлений в конкретных условиях места и времени. Они характеризуют экономическую мощь страны и социальную жизнь населения (ВВП, ВНП, ВНД, реальные располагаемые денежные доходы населения, объемы промышленного и сельскохозяйственного производства, объем выпуска важнейших видов продукции). Например, численность населения Российской Федерации на 1 января 1999 г. составила 146,3 млн. человек; в 1998 г. добыто 303 млн. т нефти (включая газовый конденсат), 591 млрд. м3 естественного газа и т.д.; за 1999 г. ВВП в России составил в текущих ценах 4 476 млрд. руб., промышленностью страны за этот период произведено продукции (работ, услуг) в действующих ценах на сумму 2 995 млрд. руб. Различают два вида абсолютных величин: индивидуальные и суммарные. Индивидуальными называют абсолютные величины, характеризующие размеры признака у отдельных единиц совокупности (например, размер заработной платы отдельного работника, вклада гражданина в определенном банке и т.д.). Они получаются непосредственно в процессе статистического наблюдения и фиксируются в первичных учетных документах. В отличие от индивидуальных суммарные абсолютные величины характеризуют итоговую величину признака по определенной совокупности объектов, охваченных статистическим наблюдением. Они являются суммой количества единиц изучаемой совокупности (численность совокупности) или суммой значений варьирующего признака всех единиц совокупности (объем варьирующего признака). Абсолютные статистические величины представляют собой именованные числа, т. е. имеют какую-либо единицу измерения. В зависимости от сущности исследуемого социально-экономического явления абсолютные статистические величины выражаются в натуральных, стоимостных и трудовых единицах измерения. Абсолютные статистические величины могут быть как положительными (доходы), так и отрицательными (убытки, потери). Натуральные единицы измерения в свою очередь могут быть простыми (тонны, штуки, метры, литры) и сложными, являющимися комбинацией нескольких разноименных величин (грузооборот железнодорожного транспорта выражается в тонно-километрах, производство электроэнергии — в киловатт-часах, затраты труда — в человеко-часах, человеко-днях). В статистике применяют и абсолютные показатели, выраженные в условно-натуральных единицах измерения (например, разные виды топлива пересчитываются в условное топливо, тракторный парк — в эталонные тракторы). Стоимостные единицы измерения используются, например, для выражения объема разнородной продукции в стоимостной (денежной) форме — рублях. В стоимостных единицах выражают валовой выпуск продукции, доходы населения и др. При использовании стоимостных измерителей принимают во внимание изменение цен с течением времени. Этот недостаток стоимостных измерителей преодолевают применением «неизменных» или «сопоставимых» цен одного и того же периода. В трудовых единицах измерения (человеко-днях, человеко-часах) учитываются общие затраты труда на предприятии, трудоемкость отдельных операций технологического цикла. 4.2. Относительные статистические величины Наряду с абсолютными статистическими величинами большое значение в статистике имеют относительные величины. В процессе выявления ряда важнейших для социально-экономической жизни вопросов возникает необходимость в изучении структуры явления, соотношения между отдельными его частями, развития во времени. Относительная величина в статистике — это обобщающий показатель, который представляет собой частное от деления одного абсолютного показателя на другой и дает числовую меру соотношения между ними. Основное условие правильного расчета относительной величины — сопоставимость сравниваемых показателей и наличие реальных связей между изучаемыми явлениями. Величина, с которой производится сравнение (знаменатель дроби), обычно называется базой сравнения или основанием. В зависимости от выбора базы сравнения относительный показатель может быть представлен в различных долях единицы: десятых; сотых (т. е. процентах); тысячных (десятая часть процента называется промилле); десятитысячных (сотая часть процента называется продецимилле). Сопоставляемые величины могут быть как одноименными, так и разноименными (в последнем случае их наименования образуются от наименований сравниваемых величин, например, руб./чел.; ц/гa; руб./м2). По своему содержанию относительные величины подразделяются на в и д ы: относительные величины динамики, планового задания, структуры, интенсивности, уровня экономического развития, координации и сравнения. Относительная величина динамики (i) рассчитывается как отношение уровня признака в определенный период или момент времени к уровню этого же признака в предшествующий период или момент времени, т. е. она характеризует изменение уровня какого-либо явления во времени. Относительные величины динамики называют темпами роста. Выбор базы сравнения при исчислении относительных показателей динамики определяется целью исследования. Относительная величина планового задания (iпл.з) рассчитывается как отношение уровня, запланированного на предстоящий период, к уровню, фактически сложившемуся в этом периоде. Относительная величина выполнения плана (iвып.пл) представляет собой отношение фактически достигнутого в данном периоде уровня к запланированному. Относительные величины динамики, планового задания и выполнения плана связаны соотношением: Относительными величинами структуры называются показатели, характеризующие долю отдельных частей изучаемой совокупности во всем ее объеме. Они рассчитываются путем деления численности единиц в отдельных частях совокупности на общую численность единиц совокупности (или объем явления). Выражаются они простым кратным отношением или в процентах. В качестве примера относительных величин структуры могут служить данные об удельном весе городского населения в общей численности населения России: в 1913 г. — 18%, в 1999 г. — 73%. Относительными величинами интенсивности называют показатели, характеризующие степень распространения или уровень развития того или иного явления в определенной среде. Они вычисляются путем сравнения разноименных величин, находящихся в определенной связи между собой. Эти показатели обычно определяются в расчете на 100, 1000 и т.д. единиц изучаемой совокупности (на 100 га земли, на 1000 человек населения и т.д.) и являются именованными числами. Примерами могут служить плотность населения, выражающаяся средним числом жителей на одном квадратном километре территории (85,7 чел./км2 в России в 1999 г.), обеспеченность населения медицинскими кадрами (численность врачей всех специальностей 46,7 врача на 10 000 россиян в 1999 г.), возрастные коэффициенты рождаемости (число родившихся в среднем за год на 1000 женщин по возрастным группам). Разновидностью относительных величин интенсивности являются относительные показатели уровня экономического развития, характеризующие уровни ВВП, ВНП, ВНД и других показателей на душу населения и играющие важную роль в оценке развития экономики страны (уровень ВВП Российской Федерации на душу населения в 1999 году составил 30 595 руб. в рыночных ценах). Относительными величинами координации называют показатели, характеризующие соотношение отдельных частей целого между собой. Вычисление этого вида показателей производится путем деления одной части целого на другую часть целого. Таким образом, относительные величины координации являются разновидностью относительных величин интенсивности, с той лишь разницей, что они показывают степень распространения, развития разнородных признаков одной и той же совокупности (целого). В зависимости от поставленной задачи тот или иной признак может быть принят за базу. Поэтому для одной и той же совокупности можно исчислить несколько относительных показателей координации. Относительными величинами сравнения называют показатели, представляющие собой частные от деления одноименных абсолютных статистических величин, характеризующих разные объекты (предприятия, фирмы, районы, области, страны и т.д.), относящихся к одному и тому же периоду (или моменту) времени. Например, соотношение между уровнями себестоимости определенного вида продукции, выпущенной на двух предприятиях, между уровнями производительности труда в разных странах (при одинаковой методике счета). Рассчитывая относительные величины сравнения, следует обращать внимание на сопоставимость сравниваемых показателей с позиции методологии их исчисления, поскольку по целому ряду показателей методы их исчисления в разных странах или в разные периоды времени неодинаковы. Поэтому, прежде чем рассчитывать относительные показатели сравнения, приходится решать задачу пересчета сравниваемых показателей по единой методологии. Научная ценность относительных величин высока, но их нельзя рассматривать в отрыве от абсолютных показателей, соотношения которых они выражают, иначе они не смогут точно характеризовать изучаемые явления. Пользуясь в анализе относительными величинами, необходимо показать, какие абсолютные величины за ними скрываются. В противном случае можно прийти к неправильным выводам. Например, при сравнении двух абсолютных величин 2 тыс. руб. и 5 тыс. руб. получили относительную величину 40%, т. е. 2: 5 * 100. Тот же результат получим, сравнивая 200 тыс. руб. и 500 тыс. руб. Но абсолютное значение одного процента, например второго показателя, в том и другом случае будет разным: в первом — оно составит 50, во втором — 5000 руб. Таким образом, лишь комплексное применение абсолютных и относительных величин выступает как важное средство информации и анализа самых различных явлений социально-экономической жизни. Контрольные вопросы 1. Что такое абсолютные статистические величины и каково их значение? Приведите примеры абсолютных величин. 2. Назовите виды статистических показателей. Приведите примеры. 3. В каких единицах измерения выражаются абсолютные статистические величины? Приведите примеры. 4. Всегда ли для анализа изучаемого явления достаточно одних абсолютных показателей? 5. Что называется относительными величинами? 6. Каковы основные условия правильного расчета относительной величины? 7. В какой форме могут быть выражены относительные величины? 8. Какие виды относительных величин вы знаете? Приведите примеры.
Глава 5. Средние величины и показатели вариации 5.1. Понятие о средних величинах Как правило, многие признаки единиц статистических совокупностей различны по своему значению, например, заработная плата рабочих одной профессии какого-либо предприятия не одинакова за один и тот же период времени, различны урожайность сельскохозяйственных культур в хозяйствах района и иены на рынке на одинаковую продукцию и т.д. Поэтому, чтобы определить значение признака, характерное для всей изучаемой совокупности единиц, прибегают к расчету средних величин. Средней величиной в статистике называется обобщающий показатель, характеризующий типичный уровень явления в конкретных условиях места и времени, отражающий величину варьирующего признака в расчете на единицу качественно однородной совокупности. В экономической практике используется широкий круг показателей, вычисленных в виде средних величин. Например, обобщающим показателем доходов рабочих акционерного общества (АО) служит средний доход одного рабочего, определяемый отношением фонда заработной платы и выплат социального характера за рассматриваемый период (год, квартал, месяц) к численности рабочих АО. Для лиц с достаточно однородным уровнем доходов, например, работников бюджетной сферы и пенсионеров по старости (исключая имеющих льготы и дополнительные доходы) можно определить типичные доли расходов на покупку предметов питания. Так можно говорить о средней продолжительности рабочего дня, среднем тарифном разряде рабочих, среднем уровне производительности труда и т.д. Вычисление среднего — один из распространенных приемов обобщения; средний показатель отражает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей. Там, где возникает потребность обобщения, расчет таких характеристик приводит к замене множества различных индивидуальных значений признака средним показателем, характеризующим всю совокупность явлений, что позволяет выявить закономерности, присущие массовым общественным явлениям, незаметные в единичных явлениях. Средняя отражает характерный, типичный, реальный уровень изучаемых явлений, характеризует эти уровни и их изменения во времени и в пространстве. Средняя — это сводная характеристика закономерностей процесса в тех условиях, в которых он протекает. Анализ средних выявляет, например, закономерности изменения производительности труда, заработной платы рабочих отдельного предприятия на определенном этапе его экономического развития, изменения климата в конкретном пункте земного шара на основе многолетних наблюдений средней температуры воздуха и др. Однако для того, чтобы средний показатель был действительно типизирующим, он должен определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это является основным условием научно обоснованного использования средних. Средние, полученные для неоднородных совокупностей, будут искажать характер изучаемого общественного явления, фальсифицировать его, или будут бессмысленными. Так, если рассчитать средний уровень доходов служащих какого-либо района, то получится фиктивный средний показатель, поскольку для его исчисления использована неоднородная совокупность, включающая в себя служащих предприятий различных типов (государственных, совместных, арендных, акционерных), а также органов государственного управления, сферы науки, культуры, образования и т.п. В таких случаях метод средних используется в сочетании с методом группировок, позволяющим выделить однородные группы, по которым и исчисляются типические групповые средние. Групповые средние позволяют избежать "огульных" средних, обеспечивают сравнение уровней отдельных групп с общим уровнем по совокупности, выявление имеющихся различий и т.д. Однако нельзя сводить роль средних только к характеристике типических значений признаков в однородных по данному признаку совокупностях. На практике современная статистика использует так называемые системные средние, обобщающие неоднородные явления (характеристики государства, единой народно-хозяйственной системы: например, средний национальный доход на душу населения, средняя урожайность зерновых по всей стране, средний реальный доход на душу населения, среднее потребление продуктов питания на душу населения, производительность общественного труда). В современных условиях развития рыночных отношений в экономике средние служат инструментом изучения объективных закономерностей социально-экономических явлений. Однако в экономическом анализе нельзя ограничиваться лишь средними показателями, так как за общими благоприятными средними могут скрываться и крупные серьезные недостатки в деятельности отдельных хозяйствующих субъектов, и ростки нового, прогрессивного. Так, например, распределение населения по доходу позволяет выявлять формирование новых социальных групп. Поэтому наряду со средними статистическими данными необходимо учитывать особенности отдельных единиц совокупности. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц, так как в этом случае согласно закону больших чисел взаимопогашаются случайные, индивидуальные различия между единицами, и они не оказывают существенного влияния на среднее значение, что способствует проявлению основного, существенного, присущего всей массе. Если основываться на средней из небольшой группы данных, то можно сделать неправильные выводы, поскольку такой средний показатель будет отражать значительное влияние индивидуальных особенностей, т.е. случайных моментов, не характерных для изучаемой совокупности в целом. Каждая средняя характеризует изучаемую совокупность по какому-либо одному признаку, но для характеристики любой совокупности, описания ее типических черт и качественных особенностей нужна система средних показателей. Поэтому в практике отечественной статистики для изучения социально-экономических явлений, как правило, исчисляется система средних показателей. Так, например, показатели средней заработной платы оцениваются совместно с показателями средней выработки, фондовооруженности и энерговооруженности труда, степенью механизации и автоматизации работ и др. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя. Поэтому для конкретного показателя, используемого в социально-экономическом анализе, можно исчислить только одно истинное значение средней на базе научного способа расчета. 5.2. Виды средних и способы их вычисления Выбор вида средней определяется экономическим содержанием определенного показателя и исходных данных. В каждом конкретном случае применяется одна из средних величин: арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т.д. Перечисленные средние относятся к классу степенных средних и объединяются общей формулой (при различных значениях m): , (5.1)
где – среднее значение исследуемого явления; т – показатель степени средней; x – текущее значение (вариант) осредняемого признака; п – число признаков. В зависимости от значения показателя степени т различают следующие виды степенных средних: При т = -1 – средняя гармоническая; при т = 0 – средняя геометрическая ; при т = 1 – средняя арифметическая ; при т = 2 – средняя квадратическая ; при т = 3 – средняя кубическая . При использовании одних и тех же исходных данных, чем больше т в формуле (5.1), тем больше значение средней величины: (5.2) Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется в статистике правилом мажорантности средних. Характер имеющихся данных определяет существование только одного истинного среднего значения показателя. Вид средней выбирается в каждом отдельном случае путем конкретного анализа изучаемой совокупности, он определяется материальным содержанием изучаемого явления, а также принципами суммирования и взвешивания. Помимо степенных средних в статистической практике используются средние структурные, в качестве которых рассматриваются мода и медиана. Остановимся подробнее на степенных средних. 5.2.1. Средняя арифметическая Наиболее распространенным видом средних является средняя арифметическая. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц. Для общественных явлений характерна аддитивность (суммарность) объемов варьирующего признака, этим определяется область применения средней арифметической и объясняется ее распространенность как обобщающего показателя. Так, например, общий фонд заработной платы – это сумма заработных плат всех работников, валовой сбор урожая – сумма произведенной продукции со всей посевной площади. Чтобы исчислить среднюю арифметическую, нужно сумму всех значений признаков разделить на их число. Средняя арифметическая применяется в форме простой средней и взвешенной средней. Исходной, определяющей формой, служит простая средняя. Ø Средняя арифметическая простая равна простой сумме отдельных значений осредняемого признака, деленной на общее число этих значений (она применяется в тех случаях, когда имеются несгруппированные индивидуальные значения признака): , (5.3) где x1, x2, …, xn – индивидуальные значения варьирующего признака (варианты); п – число единиц совокупности. Например, требуется найти среднюю выработку одного рабочего (слесаря), если известно, сколько деталей изготовил каждый из 15 рабочих, т.е. дан ряд индивидуальных значений признака, шт.: 21; 20; 20; 19; 21; 19; 18; 22; 19; 20; 21; 20; 18; 19; 20. Средняя арифметическая простая рассчитывается по формуле (5.3), шт.:
Средняя из вариантов, которые повторяются различное число раз, или, как говорят, имеют различный вес, называется взвешенной. В качестве весов выступают численности единиц в разных группах совокупности (в группу объединяют одинаковые варианты). Ø Средняя арифметическая взвешенная – средняя сгруппированных величин x1, x2, …, xn – вычисляется по формуле:
, (5.4) где – веса (частоты повторения одинаковых признаков); – сумма произведений величины признаков на их частоты; – общая численность единиц совокупности.
Технику вычисления средней арифметической взвешенной проиллюстрируем на рассмотренном выше примере. Для этого сгруппируем исходные данные и поместим их в табл. 5.1. Таблица 5.1
Дата добавления: 2014-01-06; Просмотров: 582; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |