Рассмотрим систему, состоящую из «n» материальных точек, составим для этой системы дифференциальные уравнения движения (2) и сложим их почленно
.
Последняя сумма по свойству внутренних сил равна нулю. Кроме того,
.
Окончательно находим
(9)
Уравнение (9) выражает теорему об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна геометрической сумме всех действующих на систему внешних сил.
В проекциях на координате оси будем иметь:
(10)
Найдем другое выражение теоремы. Пусть в момент t=0 количество движения равно , а в момент t1 становится . Тогда, умножая обе части равенства (9) на dt и интегрируя, получим:
или
(11)
Уравнение (11) выражает теорему об изменении количества движения системы за некоторый промежуток времени равно сумме импульсов действующих на систему внешних сил за тот же промежуток времени.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление