КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод 3
СПЛАЙНЫ Метод 2 Интерполяционная формула Лагранжа.
Построим такой полином. Введём полином
Легко убедится, что во всех точках кроме точки. , если , если Отсюда следует, что искомый полином, проходящий через все табличные точки можно представить в виде
Так как - это полином степени, то и тоже является полиномом степени. Другого полинома отличного от полинома Лагранжа проходящего через все узлы быть не может. С помощью полинома Лагранжа можно вычислить приближённое значение аппроксимируемой функции для любого. Таким образом, нахождение аппроксимируемой функции для значений х внутри заданного отрезка, называется интерполяцией, а за пределами экстраполяцией. Экстраполяция даёт значительно большую погрешность, чем интерполяция, поэтому её желательно избегать.
Эта погрешность непрерывно распределена на отрезке. При равноотстоящих узлах наибольшая точность наблюдается в середине интервала, а наименьшая вблизи концов интервала. Можно построить интерполяционный полином для которого погрешность равномерно распределена по отрезку, для этого узлы должны являться корнем полинома Чебышева. При большом числе узлов интерполяции { } использование полинома Лагранжа может оказаться нежелательным, в этом случае аппроксимацию можно производить с помощью сплайнов. Сплайн – это функция, которая вместе с несколькими производными непрерывна на всём заданном отрезке [a,b], а на каждом частичном отрезке { } в отдельности является полиномом некоторой степени. Максимальная по всем частичным отрезкам степень полинома называется степенью сплайна. Простейшим сплайном, сплайном 1-й степени, является кусочно-линейная функция. Представим уравнение сплайна для -го интервала в виде уравнения. Найдём коэффициенты сплайна и для этого используем следующие условия непрерывности.
Из этих условий получаем
Дата добавления: 2014-01-06; Просмотров: 263; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |