Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема сложения вероятностей. Вероятность появления хотя бы одного из событий равна




Вероятность появления хотя бы одного из событий равна

Следствие 2. Если события попарно несовместные, то

Действительно в этом случае

Пример 4. Производится три выстрела по одной мишени. Вероятность попадания при первом выстреле - , при втором - , при третьем - . Найти вероятность хотя бы одного попадания.

Решение. Пусть - попадание при первом выстреле, - при втором, - при третьем, - хотя бы одно попадании при трех встрелах. Тогда , где - совместные независимые в совокупности. Тогда

Следствие 3. Если попарно несовместные события образуют полную группу, то

Следствие 4. Для противоположных событий

Иногда при решении задач легче найти вероятность противоположного события. Например в примере 4 - промах при трех выстрелах. Так как независимые в совокупности, и то

Следствие 5. Вероятность появления хотя бы одного из событий , независимых в совокупности равна

(1)

где - вероятности появления событий .

В случае, если имеют одинаковую вероятность , то формула (1) имеет вид , где




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 330; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.