Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Линии токов жидкости и вихревые линии. Плавно и резко изменяющееся движение




Установившееся и неустановившееся течение жидкости

Установившимся называется течение жидкости, неизменное по времени, при котором давление и скорость являются функциями только координат, но не зависят от времени. Давление и скорость могут изменяться при перемещении частицы жидкости из одного положения в другое, но в данной неподвижной относительно русла точке давление и скорость при установившемся движении не изме­няются по времени, т. е.

P=f1(x,y,z), v=f2(x,y,z).

В частном случае установившееся течение может быть равномер­ным, когда скорость каждой частицы не изменяется с изменением ее координат, и поле скоростей остается неизменным вдоль потока.

Неустановившимся называется течение жидкости, все характе­ристики которого (или некоторые из них) изменяются по времени в точках рассматриваемого пространства.

В общем случае неустановившегося течения давление и скорость зависят как от координат, так и от времени:

P=F1(x,y,z,t), v=F2(x,y,z,t).

Примерами неустановившегося течения жидкости могут служить быстрое опорожнение сосуда через отверстие в дне или движение во всасывающей или напорной трубе поршневого насоса, поршень ко­торого совершает возвратно-поступательное движение. Примером установившегося течения может служить истечение жидкости из со­суда, в котором поддерживается постоянный уровень, или движение жидкости в трубопроводе, создаваемое центробежным насосом с посто­янной частотой вращения вала.

Исследование установившихся течений гораздо проще, чем не­установившихся. Траектории частиц жидкости при установившемся течении яв­ляются неизменными по времени.

При неустановившемся течении траектории различных частиц, проходящих через данную точку пространства, могут иметь разную форму. Наглядное представление о поле скоростей движущейся жидкости можно получить, если построить векторные линии этого поля, называемые в гидромеханике линиями тока.

Линией тока называется кривая, в каждой точке которой вектор скорости в данный момент времени направлен по касательной.

Очевидно, что в условиях установившегося течения линия тока совпадает с траекторией частицы и не изменяет своей формы с тече­нием времени.

 

Если в движущейся жидкости взять бесконечно малый замкну­тый контур и через все его точки провести линии тока, то образуется трубчатая поверхность, называемая трубкой тока. Часть потока, заключенная внутри трубки тока, называется элементарной струйкой. При стремлении поперечных размеров струйки к нулю она в пределе стягивается в линию тока.

В любой точке трубки тока, т. е. боковой поверхности струйки, векторы скорости направлены по касательной, а нормальные к этой поверхности составляющие скорости отсутствуют, следовательно, при установившемся движении ни одна частица жидкости, ни в одной точке трубки тока не может проникнуть внутрь струйки или выйти наружу. Трубка тока, таким образом, является как бы непроницае­мой стенкой, а элементарная струйка представляет собой самостоя­тельный элементарный поток.

 

Рис 1.12 Рис 1.3

Линии тока Трубка тока

 

Потоки конечных размеров будем сначала рассматривать как совокупность элементарных струек, т. е. будем предполагать течение струйным. Из-за различия скоростей соседние струйки будут сколь­зить одна по другой, но не будут перемешиваться одна с другой. Живым сечением, или просто сечением потока, называется в общем случае поверхность в пределах потока, проведенная нормально к ли­ниям тока. Далее будем рассматривать в потоках такие участки, в которых струйки можно считать параллельными и, следовательно, живые сечения — плоскими.

Различают напорные и безнапорные течения жидкости. Напор­ными называют течения в закрытых руслах без свободной поверхно­сти, а безнапорными — течения со свободной поверхностью. При напорных течениях давление вдоль потока обычно переменное, при безнапорном — постоянное (на свободной поверхности) и чаще всего атмосферное. Примерами напорного течения могут служить течения в трубопроводах с повышенным (или пониженным) давлением, в гид­ромашинах или других гидроагрегатах. Безнапорными являются течения в реках, открытых каналах и лотках.

Расходом называется количество жидкости, протекающее через живое течение потока (струйки) в единицу времени. Это количество можно измерить в единицах объёма, в весовых единицах или в единицах массы, в связи с чем различают объёмный Q, весовой QG и массовый Qm расходы.

Для элементарной струйки, имеющий бесконечно малые площади сечений, можно считать истинную скорость одинаковой во всех точках каждого сечения. Следовательно, для этой струйки объёмный(м3/с), весовой(Н/с) и массовый(кг/с) расходы

;

Для потока конечных размеров в общем случае скорость имеет различное значение в разных точках сечения, поэтому расход надо определять как сумму элементарных расходов струек.

Обычно в рассмотрение вводят среднюю по сечению скорость

vср =Q/S, откуда Q= vср S.

Основываясь на законе сохранения вещества, на предположении о сплошности (неразрывности) течения и на указанном выше свойстве трубки тока, заключающемся в ее «непроницаемости», для устано­вившегося течения несжимаемой жидкости можно утверждать, что объемный расход во всех сечениях элементарной струйки один и тот же:

dQ=v1dS1=v2dS2=const (вдоль струйки)

Это уравнение называется уравнением объемного расхода для эле­ментарной струйки.

Аналогичное уравнение можно составить и для потока конечных размеров, ограниченного непроницаемыми стенками, только вместо истинных скоростей следует ввести средние скорости.

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 777; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.