Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кинетическая энергия вращающегося твердого тела

 

Поскольку твердое тело представляет собой частный случай системы материальных точек, то кинетическая энергия тела при вращении вокруг неподвижной оси Z будет равна сумме кинетических энергий всех его материальных точек, то есть

Все материальные точки твердого тела вращаются в этом случае по окружностям с радиусами и с одинаковыми угловыми скоростями . Линейная скорость каждой материальной точки твердого тела равна . Кинетическая энергия твердого тела примет вид

Сумма в правой части этого выражения в соответствии с (4.4) представляет собой момент инерции этого тела относительно данной оси вращения. Поэтому формула для расчета кинетической энергии вращающегося относительно неподвижной оси твердого тела примет окончательный вид:

. (4.21)

 

Здесь учтено, что

Вычисление кинетической энергии твердого тела в случае произвольного движения значительно усложняется. Рассмотрим плоское движение, когда траектории всех материальных точек тела лежат в параллельных плоскостях. Скорость каждой материальной точки твердого тела, согласно (1.44), представим в виде

 

,

где в качестве мгновенной оси вращения выберем ось, проходящую через центр инерции тела перпендикулярно плоскости траектории какой-либо точки тела. В этом случае в последнем выражении представляет собой скорость центра инерции тела, - радиусы окружностей, по которым вращаются точки тела с угловой скоростью вокруг оси, проходящей через центр его инерции. Так как при таком движении ^, то вектор, равный , лежит в плоскости траектории точки.

На основании сказанного выше кинетическая энергия тела при его плоском движении равна

.

Возводя выражение, стоящее в круглых скобках, в квадрат и вынося за знак суммы постоянные для всех точек тела величины, получим

 

(4.22)

 

Здесь учтено, что ^.

Рассмотрим каждое слагаемое в правой части последнего выражения отдельно. Первое слагаемое в силу очевидного равенства равно

.

Второе слагаемое равно нулю, так как сумма определяет радиус-вектор центра инерции (3.5), который в данном случае лежит на оси вращения. Последнее слагаемое с учетом (4.4) примет вид . Теперь, окончательно, кинетическая энергия при произвольном, но плоском движении твердого тела может быть представлена в виде суммы двух слагаемых:

, (4.23)

где первое слагаемое представляет собой кинетическую энергию материальной точки с массой, равной массе тела и движущейся со скоростью, которую имеет центр масс тела;

второе слагаемое представляет собой кинетическую энергию тела, вращающегося вокруг оси (движущейся со скоростью ), проходящей через его центр инерции.

Выводы: Итак, кинетическая энергия твердого тела при его вращении вокруг неподвижной оси может быть вычислена с помощью одного из соотношений (4.21), а в случае плоского движения с помощью (4.23).

Контрольные вопросы.

4.4. В каких случаях (4.23) переходит в (4.21)?

4.5. Как будет выглядеть формула для кинетической энергии тела при его плоском движении, если мгновенная ось вращения не проходит через центр инерции? Каков при этом смысл входящих в формулу величин?

4.6. Покажите, что работа внутренних сил при вращении твердого тела равна нулю.

 

<== предыдущая лекция | следующая лекция ==>
Примеры вычисления моментов инерции однородных симметричных тел | Механическая работа при вращательном движении твердого тела
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1660; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.