Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод гілок і меж

 

Цей метод точного вирішення ЗЦЛП найчастіше використовується на практиці. Він полягає в наступному.

Спочатку вирішується ослаблена задача. Якщо отримане оптимальне рішення цілочислове, то ЗЦЛП вирішена. Якщо ж оптимальне рішення ЗЛП не є цілочисловим, то робимо "розгалуження" у такий спосіб. Нехай змінна хs прийняла в оптимальному рішенні значення qs, що не є цілим. Тоді розглядаємо дві ЗЦЛП. Перша виходить додаванням обмеження хs <=[qs], друга – додаванням обмеження хs >=[qs] + 1, де [qs] - ціла частина числа qs.

Кожна із цих двох задач аналогічним способом може розбитися ще на дві задачі і т.д.

Якщо в результаті вирішення якої-небудь із задач виходить цілочисловий оптимальний план, то значення А цільової функції при цьому плані відіграє роль "межі": якщо в результаті вирішення чергової ЗЛП з'ясується, що оптимальне значення цільової функції "гірше" А, тоді така задача "не гілкується".

Недолік методу гілок і меж полягає в тому, що часто оптимальне рішення ЗЦЛП досягається після дуже великої кількості розгалужень.

 

Повернемося до ЗЦЛП прикладу 1.

Використовуємо геометричний метод вирішення для відшукання оптимальних планів ослаблених задач.

 

 

<== предыдущая лекция | следующая лекция ==>
Вирішення ЗЦЛП методом округлення | Загальна постановка й різновиди задач математичного програмування
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 363; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.