КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Геометричний розподіл
Нехай проводяться незалежні випробування, в кожному з яких ймовірність появи події А дорівнює р , а . Випробування закінчуються як тільки з’явиться подія А. Таким чином, якщо подія А з’явиться у -му випробуванні, то у попередніх випробуваннях вона не з’явиться. Позначимо через Х дискретну випадкову величину – числа випробувань, які треба провести до першої появи події А. Нехай в перших випробуваннях подія А не наступила, а в -му випробуванні з’явилася. Ймовірність цієї складної події за теоремою множення ймовірностей незалежних подій дорівнює
, (10.5)
Як видно, формула (10.5) є геометричною прогресією з першим членом , знаменником
Тому розподіл, при якому ймовірність появи події А задається формулою (10.5), називається геометричною.
Приклад: Робітник виготовляє вироб до першого бракованого. Ймовірність виготовлення бракованого виробу 0,2. Знайти ймовірність того, що бракований вироб буде третім.
Рішення
За формулою (10.5) знайдемо ймовірність влучення при третьому пострілі
Дата добавления: 2014-01-07; Просмотров: 421; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |