Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Критерии устойчивости САУ




Это искусственные приемы, которые позволяют, не находя корней характерного уравнения, ответить на вопросы об устойчивости САУ, т.е. определять знаки вещественных частей корней.

Два вида критериев устойчивости:

1). Алгебраический критерий устойчивости (критерий устойчивости Гурвица).

Пусть заданно характерное уравнение.

Для устойчивости САУ необходимо и достаточно:

1). Чтобы все коэффициенты характеристического уравнения имели бы один знак - (система не устойчива)

2). Главный определитель Гурвица, составленный по определенному правилу, и все его диагонали миноры имели бы знак коэффициентов - были бы больше нуля.

Правила написания главного определения Гурвица.

1). По главной диагонали определителя располагаются все коэффициенты характеристического уравнения в порядке возрастания индексов, начиная с a1.

2). Места в определителе над главной диагональю заполняются коэффициентами характеристического уравнения в порядке возрастания индексов.

3). Места в определителе под главной диагональю заполняются коэффициентами характерного уравнения в порядке убывания индексов.

4). Места в определителе, где должны стоять коэффициенты с индексами больше n и меньше нуля, заполняются нулями

Таким образом главный определитель Гурвица имеет вид:

A= >0

САУ устойчива, если

1). Все коэффициенты характеристического уравнения больше нуля (0!)

, , ….

2). Главный определитель Гурвица и все его диагональные миноры > 0.

, , , ….

Рассмотрим примеры.

1.

1.

2.

Для устойчивости САУ второго порядка необходимым и достаточным условием устойчивости является положительность коэффициентов характеристического уравнения.

2.

1. i=0…3

2.

Необходимым и достаточным условием устойчивости систем третьего порядка является положительность коэффициентов и произведение внутренних членов должно быть больше произведения крайних членов характеристического уравнения.

3.

,

, ,

 

Есть еще алгебраический критерий Рауса. Это тот же критерий Гурвица, но организованный таким образом, что по нему удобно составлять программы для определения устойчивости.

 

Критерий устойчивости Вышнеградского для систем третьего порядка.

Вышнеградский И.А. предложил изображать границу устойчивости на так называемой плоскости параметров Вышнеградского.

Пусть имеем характеристическое уравнение третьей степени.

Преобразуем его с помощью подстановки:

Тогда оно примет вид:

A1 и A2 называются параметрами Вышнеградского (безразмерные величины), в плоскости которых строится граница устойчивости.

Применим к преобразованному уравнению критерий устойчивости Гурвица

или A1 A2 > 1

На границе устойчивости .

Отсюда - уравнение на границе устойчивости

По коэффициентам характеристического уравнения определяются А1 и А2. Если точка оказалась ниже гиперболы – САУ устойчива, выше - неустойчива.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 6759; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.