Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свободные, затухающие и вынужденные колебания




Во всякой реальной колебательной системе обычно имеют место силы трения (сопротивления), действие которых приводит к уменьшению энергии системы. Сила трения выражается формулой:

 

 

где r – коэффициент трения, а знак минус указывает, что на­правление силы всегда противоположно скорости движения.

Если силы трения отсутствуют, формула (2.4) дает диффе­ренциальное уравнение:

которое имеет, решение в виде:

где ω0 = . Колебания, происходящие при отсутствии сил трения, называются собственными или свободными. Частота собственных колебаний зависит только от свойств системы.

Допустим теперь, что в системе действуют две силы: FУПР и FТР. Уравнение движения тела будет иметь вид:

 

Разделим это уравнение на массу тела и обозначим: .

 

Тогда получим дифференциальное уравнение затухающих колебаний, энергия которых уменьшается с течением времени:

Этому уравнению удовлетворяет функция: х = А0 е-dt Cos (wt + j0),

 

где Значит, сейчас уже частота колебания зависит от , и . Амплитуда колебания будет с течением време­ни изменяться по экспоненциальному закону . Величина , определяющая быстроту убывания амплитуды колебания с течением времени, называется коэффициентом затухания. Произ­ведение коэффициента затухания на период колебания T, равное логарифму отношения двух соседних амплитуд:

 

; ; -,

 

есть безразмерная величина, и называется логарифмическим декре­ментом затухания. Колебания, происходящие в системе при нали­чии сил трения, называются затухающими. Частота этих колебаний зависит от свойств системы и интенсивности потерь (с их увеличением частота уменьшается). Для получения незату­хающих колебаний система должна подвергаться действию еще и внешней силы, непрерывно изменяющейся со временем по какому-нибудь закону. В частности, предположим, что внешняя сила явля­ется синусоидальной:

тогда уравнение движения тела будет иметь вид:

Разделим это уравнение на массу тела и к ранее принятым обозна­чениям добавим . В этом случае уравнение примет вид:

 

 

Уравнение характеризует уже вынужденные незатухающие ко­лебания под действием внешней периодической силы. Решение этого уравнения имеет вид:

x = A Cos (ωt-φ),

 

где А – амплитуда колебания, φ – фаза, равная: φ = аrctg .

 

Амплитуда вы­нужденных колебаний системы:

 

где – угловая частота собственных колебаний системы; угловая частота вынуждающей силы.

При вынужденных колебаниях имеет место явление резонан­са, вызывающее резкое увеличение амплитуды вынужденных колеба­ний при совпадении собственной угловой частоты колебаний и уг­ловой частоты вынуждающей силы. Поскольку вынужденные колеба­ния имеют широкое применение в технике, то явление резонанса должно всегда учитываться, ибо оно может быть полезным в от­дельных процессах, а может быть и опасным явлением.

Важное место в машиностроении занимают вибрации (от лат. vibratio – колебание) – меха­нические колебания упругих тел различной формы. Это понятие обычно применяется по отношению к механическим колебаниям дета­лей машин, конструкций и сооружений, рассматриваемых в инженер­ном деле.

Раздел 5. Физика волновых процессов




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1202; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.