КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Модели экономического прогнозирования
4.1 Экономико-математические, факторные и структурные модели в прогнозировании.
Экономико-математическая модель это система формализованных соотношений, описывающих основные взаимосвязи элементов, образующих экономическую систему. Система экономико-математических моделей эконометрического типа служит для описания относительно сложных процессов экономического или социального характера. Простейшая экономика-математическая модель может быть представлена, например, в следующем виде: Z = a × х. Такая модель может быть использована, например, для определения потребности в материалах, требующихся для изготовления какого-либо изделия. В этом случае Z – общая потребность в материалах, “а” – норма расхода материала на одно изделие, “х”- количество изделий. Эта модель приобретает более сложный вид, если определяется потребность в материалах для изготовления нескольких видов изделий: Z = а1х1 + а2х2 + … + аnхn n Или Z = аi хi, где n= 1,2,3,...n i=1 Эта модель показывает зависимость потребности в материалах от двух факторов: количества изделий и норм расхода материалов и называется дескриптивной (описательной). Определенные виды моделей экономического и социального прогнозирования могут классифицироваться в зависимости от критерия оптимизации или наилучшего ожидаемого результата. Так, например, различают экономико-математические модели, в которых минимизируются затраты, и модели в которых желательно получить, например, максимум продукции. С учетом фактора времени модели могут быть статическими, когда ограничения в модели установлены для определенного отрезка времени, или динамическими – в этом случае ограничения установлены для нескольких отрезков времени. Различают факторные и структурные модели экономического типа. Один и тот же тип моделей может быть применим к различным экономическим объектам. В зависимости от уровня рассмотрения показателей народного хозяйства различают макроэкономические, межотраслевые, отраслевые и региональные модели. Факторные модели описывают зависимость уровня и динамики того или иного показателя от уровня и динамики влияющих на него экономических показателей – аргументов или факторов. Факторные модели могут включать различное количество переменных величин и соответствующих им параметров. Простейшими видами факторных моделей являются однофакторные, в которых фактором является какой-либо временный параметр. Многофакторные модели позволяют одновременно учитывать воздействие нескольких факторов на уровень и динамику прогнозируемого показателя. В практике экономического прогнозирования для оценки роли отдельных факторов выпуска продукции используется математическая формула, показывающая зависимость объема созданной продукции от функционирования основных факторов производства, их количественного и качественного состава. Она получила название производственной функции. Производственная функция на микроуровне выражает техническое соотношение между количеством факторов, используемых производителями, и объемом полученной продукции. В самом общем виде эта зависимость может быть представлена следующим образом: У = f (а1, а2,…аn), где У – объем продукции, а1, а2…аn – использованные факторы производства. При этом различают факторы внутренние (эндогенные) и внешние (экзогенные). Для более углубленного анализа динамики экономического роста на макроуровне была изучена взаимосвязь между объемом производства и его различными факторами. Первым вариантом явилась производственная функция Кобба – Дугласа, показывающая зависимость общего выпуска продукции от двух факторов: капитала и труда. В дальнейшем было учтено также влияние третьего фактора – технического прогресса. В итоге модель Кобба – Дугласа приняла следующий вид: а в гt У = А × К× L× Е, где У – объем выпуска продукции, А – коэффициент сопряжения размерности элементов формулы, К – затраты капитала, “а” – коэффициент, характеризующий прирост объема выпуска продукции, приходящейся на 1% прирост капитала, L – затраты труда, в – коэффициент, храктеризующий прирост объем выпуска продукции, приходящийся на 1% прироста затрат труда, “е” – фактор, отражающий влияние технического прогресса (r) и времени (t). Структурные модели описывают соотношения, связи между отдельными элементами, образующими одно целое или агрегат. Эти модели являются моделями структурно-балансового типа, где наряду с разбивкой какого-либо агрегата на составляющие элементы рассматриваются взаимосвязи этих элементов. Такие модели имеют матричную форму и применяются для анализа и прогноза межотраслевых и межрайонных связей. С их помощью описывается взаимосвязи потоков, например, межсекторные поставки продукции. Наиболее распространенной формой структурно-балансовой модели является межотраслевой баланс производства и распределения продукции. Комплекс межотраслевых моделей включает укрупненную динамическую и развернутую натурально-стоимостную модели. Единство системы обеспечивается использованием для построения натурально-стоимостного межотраслевого баланса основных показателей укрупненной динамической модели таких как ВВП, структура его распределения, а также показателей, характеризующих потребность отраслей материального производства в продукции других отраслей, в инвестициях и т.д. В зависимости от номенклатуры продукции, используемого сырья и др. различают однопродуктовые и многопродуктовые модели. К первым относятся модели, в которых установлено одно ограничение по спросу на продукцию, вырабатываемую отраслью в целом, либо одно ограничение на количество сырья или другого ресурса, потребляемого ею. Например, в топливной промышленности может быть установлено одно такое ограничение – по теплотворной способности энергоносителя. В многопродуктовых моделях рассматриваются два и более ограничений по спросу на продукцию, вырабатываемую отраслью в целом, и на потребление сырья или любого другого ресурса.
4.2. Модель динамического межотраслевого баланса.
Межотраслевой баланс представляет собой экономико-математическую модель, образуемую перекрестным наложением строк и колонок таблицы, то есть балансов распределения продукции и затрат на ее производство, увязанных по итогам. Главные показатели здесь – коэффициенты полных и прямых затрат. Динамическая модель межотраслевого баланса характеризует производственные связи народного хозяйства на ряд лет, отражает процесс воспроизводства в динамике. По модели межотраслевого баланса выполняются два типа расчетов: первый тип, когда по заданному уровню конечного потребления рассчитывается сбалансированный объем производства и распределения продукции; второй тип, включающий смешанные расчеты, когда по заданным объемам производства по одним отраслям (продуктам) и заданному конечному потреблению в других отраслях рассчитывается баланс производства и распределения продукции в полном объеме. Наибольшее распространение получила матричная экономико-математическая модель межотраслевого баланса. Она представляет собой прямоугольную таблицу (матрицу), элементы которой отражают связи экономических объектов. Количественные значения этих объектов вычисляются по установленным в теории матриц правилам. В матричной модели отражается структура затрат на производство и распределение продукции и вновь созданной стоимости. Уравнение строк матрицы записывается следующим образом: n Хij + Уi = Хi j =1 i= 1,2,…m; Хij – поставка продукции отрасли i в отрасль j; У i – конечная продукция отрасли i; Хi – валовая продукция отрасли i. Элементы строк представляют собой баланс распределения продукции, произведенной в различных отраслях экономики. Сумма внутренних производственных поставок и конечного продукта составляет валовой выпуск отрасли.
Уравнение столбцов матрицы выглядит следующим образом: n Хij + Zj = Хj, где j=1 Хij – затраты продукции отрасли i на производство продукции отрасли j; Zj – затраты первичных ресурсов и вновь созданная стоимость в отрасли j; Хj – валовые затраты включая вновь созданную стоимость в отрасли j. Хi = Хj при i=j. При этом равенство одноименных строк и столбцов означает, что стоимость распределенных и накопленных материальных благ и услуг равна сумме стоимостей произведенных затрат и вновь созданной стоимости. Межотраслевой баланс известен в науке и практике как метод “затраты – выпуск”, разработанный В.В. Леонтьевым. Этот метод сводится к решению системы линейных уравнений, где параметрами являются коэффициенты затрат на производство продукции. Коэффициенты выражают отношения между секторами экономики (коэффициенты текущих материальных затрат), они устойчивы и поддаются прогнозированию. Решение системы уравнений позволяет определить, какими должны быть выпуск и затраты в каждой отрасли, чтобы обеспечить производство конечного продукта заданного объема и структуры. Для этого составляется таблица межотраслевых потоков товаров. Неизвестными выступают выпуск и затраты товаров, произведенных и использованных в каждой отрасли. Их исчисление с помощью коэффициентов и означает объемы производства, обеспечивающие общее равновесие. В случае выявления диспропорции с учетом заказов потребителей, в том числе и государственных, составляется план-матрица выпуска всех видов материальных благ и затрат на их производство. Метод “затраты – выпуск” стал универсальным способом прогнозирования и планирования в условиях, как рыночной, так и директивной экономики. Он применяется в системе ООН, в США и других странах для прогнозирования и планирования экономики, структуры производства, межотраслевых связей.
4.3 Макроэкономические модели в прогнозировании. Факторный, лаговый и структурный аспекты сбалансированности экономики.
Экономико-математические модели в прогнозировании широко используются при составлении социально-экономических прогнозов на макроэкономическом уровне. К таким моделям относятся: · однофакторные и многофакторные модели экономического роста; · модели распределения общественного продукта (ВВП, ВНП, НД); · структурные модели; · межотраслевые модели; · модели воспроизводства основных фондов; · модели движения инвестиционных потоков; · модели уровня жизни и структуры потребления; · модели распределения заработной платы и доходов и др. При использовании этих моделей необходимо учитывать воздействие факторного, лагового и структурного аспектов сбалансированности экономики и их синтеза на основе принципа оптимальности. Факторный аспект сбалансированности экономики основывается на взаимосвязи между объемом выпуска продукции и затратами факторов производства. Он сводится к определению такой пропорции между факторами производства, которая позволяет обеспечить заданный выпуск продукции. Для определения таких количественных пропорций используются показатели эффективности затрат живого и овеществленного труда и объемы этих затрат. Лаговый аспект сбалансированности основан на распрелении во времени затрат факторов производства и достигаемого при их взаимодействии эффекта. Главные лаговые характеристики связаны с воспроизводством основных фондов, а значит и с затратами капитальных вложений. Лаг – это запаздывание, временной интервал между двумя взаимозависимыми экономическими явлениями, одно из которых является причиной, а второе – следствием. Структурный аспект сбалансированности основывается на пропорциях между I и II подразделениями общественного производства и взаимосвязях межотраслевых потоков продукции с элементами конечного потребления. Структурные межотраслевые модели широко используются для составления прогноза отраслевой структуры производства, основных производственных фондов, производственных капитальных вложений и трудовых ресурсов. Структурная сбалансированность народного хозяйства основывается на пропорциях между производством и распределением продукции. Производство общественного продукта может быть обеспечено при различной интенсивности потоков взаимозаменяемых предметов труда, а следовательно при разном соотношении между промежуточной и конечной продукцией. 5. Экономический потенциал народного хозяйства – основа
Дата добавления: 2014-01-07; Просмотров: 775; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |