Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Поле заряженного диска




Пусть нам дан не проводящий диск с центром в точке 0 и радиусом R, заряженный равномерно с поверхностной плотностью заряда s = Q /(2p R 2). Система, как и в двух предыдущих параграфах, имеет ось симметрии С ¥, совпадающую с осью х рис.2.17. Задача о параметрах поля в пространстве вырождается в задачу на плоскости, содержащей ось симметрии. Наличие плоскости симметрии, совпадающей с плоскостью диска, и взаимно-перпендикулярных плоскостей симметрии, содержащих ось С ¥, позволяет, рассчитав параметры поля в четвертой части плоскости, описать поле в пространстве. Как и в предыдущем параграфе будем рассчитывать параметры поля только для точек, лежащих на оси симметрии, для которых получаются компактные аналитические выражения. Обозначения приведены на рис.2.17. Представим заряженный диск как совокупность вложенных друг в друга

 

тонких колец толщиной dy. Пусть радиус такого произвольно выделенного кольца равен у. Определим потенциал и напряженность от этого кольца в точке М, лежащей на оси симметрии на расстоянии х от центра диска (кольца). Для этого воспользуемся формулами (2.84), (2.85), выведенными в предыдущем параграфе. Заменим в этих формулах линейную плотность заряда t на поверхностную плотность s, j на d j, Е оси на оси, R на y = x ×tga, Q на dQ = s×2p y × dy (dy = x×d a/Cos2a):

, (2.86)

Для получения параметров поля диска следует провести интегрирование выражений (2.86) по углу a в пределах от a = 0 до a =b, где tgb= y/x:

(2.87)

(2.88)

В центре диска х =0, r = R, b = p/2, Cosb=0 и (2.87), (2.88) примут вид:

(2.89)

Если диск является проводящим (металлическим), то из-за взаимного отталкивания заряды распределены по поверхности не равномерно. В центре диска поверхностная плотность меньше чем на краях. Распределение поверхностной плотности можно оценить по формуле [10]:

(2.90)

В центре диска (у =0) поверхностная плотность заряда s в четыре раза меньше, чем в случае равномерного распределения заряда по площади диска (S = p R 2). Край диска соответствует значению y = R. Знаменатель в (2.90) обращается в нуль, а напряженность на краю стремится к бесконечности. В реальных электродных системах, когда толщина диска является конечной величиной, радиус кривизны не является бесконечно малым, и напряженность остается конечной. Расчет напряженности на краю диска проводится методом конформных отображений, который рассматривается далее в этой главе. Собственная емкость проводящего диска равна:

С = 8e0eК (2.91)




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 7428; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.