![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нормальная форма уравнений в пространстве состояний
Нормальная форма уравнений в пространстве состояний получается из стандартной формы (10.1) посредством преобразования подобия. При этом предполагается, что собственные числа матрицы А различные. Введем линейное преобразование
X=MQ, (10.32)
где М - модальная матрица матрицы А. Уравнения (10.1) перепишем
Умножив первое уравнение из (10.33) слева на М-1, получим
Так как M - модальная матрица, то
М-1АМ = L = где li (при i = 1, 2,..., n) - собственные числа матрицы А. Следовательно, можно записать
где L=М-1АМ, Вn= М-1B, Cn=CM, Dn=D - матрицы; Q=[q1,q2,...,qn]T - вектор состояния системы, элементами которого являются новые переменные состояния qi (при i=1, 2,..., n). Система (10.35) представляет собой нормальную форму уравнений описания систем управления в пространстве состояний. Нормальная форма уравнений состояния позволяет декомпозировать многосвязную систему n-го порядка на n взаимонесвязанных систем, при этом дифференциальные уравнения становятся развязанными относительно переменных состояния q1,q2,...,qn, т.е. они имеют вид
где fi - внешнее воздействие на i-ю переменную состояния. Таким образом, переход к нормальной форме существенно упрощает исследование многосвязных систем. В случае кратных собственных чисел матрицы A диагональная матрица L заменяется матрицей J, которая строится из клеток Жордана, например,
Таким образом, из сравнения уравнений (10.1) и (10.35) следует, что при математическом описании одного и того же динамического процесса различному выбору переменных состояния соответствуют различные матрицы системы, управления, наблюдения, связи и различные векторные дифференциальные уравнения, каждое из которых полностью определяет выходную величину системы.
Пример. Написать уравнения состояний в нормальной форме для динамической системы, представленной на рис.10.3.
Рис. 10.3. Структурная схема системы в переменных состояния Решение. Выберем в качестве переменных состояния системы сигналы на выходах интеграторов x1 и x2. В этом случае структурной схеме (рис.10.3) соответствует следующая система уравнений (стан-дартная форма) Откуда матрицы
Собственные числа матрицы A: l1= -1, l2= -2.
Модальная матрица M=
Тогда диагональная матрица системы, матрица управления, матрица наблюдения и матрица связи будут
L= Отсюда получаем уравнения состояний системы в нормальной форме
которым соответствует структурная схема системы, приведенная на рис.10.4. Рис. 10.4. Структурная схема системы в переменных состояния по полюсам
Дата добавления: 2014-01-07; Просмотров: 792; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |