Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Нелинейные модели парной регрессии и корреляции

Или

где – вероятность события, заключенного в фигурные скобки. Выражение (1.50) означает, что предел по вероятности последовательности есть . Оценки, обладающие таким свойством, называют состоятельными. Свойство состоятельности в литературе обычно выражают символом

 

 

Различают два класса нелинейных регрессий:

1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например

– полиномы различных степеней – , ;

– равносторонняя гипербола – ;

– полулогарифмическая функция – .

2. Регрессии, нелинейные по оцениваемым параметрам, например

– степенная – ;

– показательная – ;

– экспоненциальная – .

Регрессии нелинейные по включенным переменным приводятся к линейному виду простой заменой переменных, а дальнейшая оценка параметров производится с помощью метода наименьших квадратов..

3. Регрессии, нелинейные по оцениваемым параметрам, делятся на два типа: нелинейные модели внутренне линейные (приводятся к линейному виду с помощью соответствующих преобразований, например, логарифмированием) и нелинейные модели внутренне нелинейные (к линейному виду не приводятся).

К внутренне линейным моделям относятся, например, степенная функция – , показательная – , экспоненциальная – , логистическая – , обратная – .

К внутренне нелинейным моделям можно, например, отнести следующие модели: , .

Среди нелинейных моделей наиболее часто используется степенная функция , которая приводится к линейному виду логарифмированием:

;

;

,

где .

Широкое использование степенной функции связано с тем, что параметр в ней имеет четкое экономическое истолкование – он является коэффициентом эластичности. (Коэффициент эластичности показывает, на сколько процентов измениться в среднем результат, если фактор изменится на 1%.) Формула для расчета коэффициента эластичности имеет вид:

. (1.19)

Так как для остальных функций коэффициент эластичности не является постоянной величиной, а зависит от соответствующего значения фактора , то обычно рассчитывается средний коэффициент эластичности:

. (1.20)

Приведем формулы для расчета средних коэффициентов эластичности для наиболее часто используемых типов уравнений регрессии:

Таблица 1.5

Вид функции, Первая производная, Средний коэффициент эластичности,
     

Расчет коэффициента эластичности не имеет смысла, когда для рассматриваемых признаков бессмысленно определение изменения в процентах.

Уравнение нелинейной регрессии дополняется показателем тесноты связи - это индекс корреляции:

, (1.21)

 

где – общая дисперсия результативного признака , – остаточная дисперсия.

Величина данного показателя находится в пределах: . Чем ближе значение индекса корреляции к единице, тем теснее связь рассматриваемых признаков, тем более надежно уравнение регрессии.

Квадрат индекса корреляции носит название индекса детерминации и характеризует долю дисперсии результативного признака , объясняемую регрессией, в общей дисперсии результативного признака:

, (1.22)

т.е. имеет тот же смысл, что и в линейной регрессии; .

Индекс детерминации можно сравнивать с коэффициентом детерминации для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина меньше . А близость этих показателей указывает на то, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию.

Индекс детерминации используется для проверки существенности в целом уравнения регрессии по -критерию Фишера:

,

где – индекс детерминации, – число наблюдений, – число параметров при переменной . Фактическое значение -критерия (1.23) сравнивается с табличным при уровне значимости и числе степеней свободы (для остаточной суммы квадратов) и (для факторной суммы квадратов).

О качестве нелинейного уравнения регрессии можно также судить и по средней ошибке аппроксимации, которая вычисляется по той же формуле как и в линейном случае.

<== предыдущая лекция | следующая лекция ==>
Исследование модели парной линейной регрессии | Нарушение предпосылок КЛММР
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 678; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.