Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 2. Современное состояние проблемы формирования у детей дошкольного возраста математических представлений и перспективы совершенствования методики

 

План

1. Исследования И.А. Френкеля, Л. А. Яблокова в области развития математических представлений у детей дошкольного возраста.

2. Обоснование Н.Н. Лежавы содержания и приемов обучения счету детей дошкольного возраста.

3. Исследования Г.С. Костюка математического развития детей раннего и дошкольного возраста.

Разработка психолого-педагогических вопросов методики развития математических представлений у детей дошкольного и младшего школьного возраста в 60—70-е гг. XX в. строилась на основе методологических позиций советской психологии и педа­гогики. Изучались закономерности становления представлений о числе, развития счетной и вычислительной деятельности. Обо­сновывалась необходимость начинать обучение детей с раннего возраста, с восприятия множества предметов, с последующим обучением счету, выделению отношений между числами. Разра­батывались дидактические материалы, пособия, игры.

Вопросы развития представлений о множестве предметов у детей, закономерности перехода от восприятия множеств к числу исследовались психологом И. А. Френкелем и математиком-мето­дистом Л. А. Яблоковым. Ими обоснованы положения о необхо­димости развития у детей умения распознавать отдельные элемен­ты множества с последующим переходом к обобщениям о зависи­мости восприятия множества от способа пространственного расположения его элементов; об усвоении детьми числительных; О ступенях овладения счетными операциями.

Н. А. Менчинская наиболее полно рассмотрела вопросы психо­логии обучения арифметике (проблема исследовалась ею с 1929 г.) и проследила процесс развития представления о числе в младшем по-фасте (до начала школьного обучения). На большом экспери­ментальном материале рассмотрено соотношение восприятия множеств (групп предметов) и счета на различных этапах овладения числом, дан психологический анализ процесса решения детьми арифметических задач.

Н. Н. Лежавой разработаны содержание и приемы обучения детей счету на основе идей монографического метода (1953). Автор рекомендует обучать счету без сравнения множеств, путем прибавления к имеющемуся количеству по одному (что трактуется как усвоение действий сложения и вычитания); «схватыванию» числа на глаз; составу чисел. Эти идеи сходны со взглядами Ф. Н. Блехер.

Исследования Г. С. Костюка, директора научно-исследова­тельского института психологии г. Киева, очень важны для пони­мания сущности математического развития детей раннего и млад­шего дошкольного возраста. Используя игровые эксперименталь­ные методики, Г. С. Костюк изучил процесс становления у детей представления о числе в результате осознания ими количествен­ных отношений. Он отметил, что процесс абстрагирования числа у ребенка происходит только в условиях речевого обобщения.

В методическом пособии Ф. А. Михайловой и Н. Г. Бакст «За­нятия по счету в детском саду» (М., 1958) обобщен опыт детских садов по обучению счету на основе требований «Руководства для воспитателя детского сада». При разработке пособия были учтены исследования А. М. Леушиной. Раскрыты содержание и приемы обучения детей младшей группы детского сада счету до трех; ме­тодика ознакомления детей с образованием чисел, обучения счету в пределах десяти, сравнению, составу чисел, решению арифме­тических задач в средних и старших группах (5—7 лет).

Современное состояние теории и технологии развития мате­матических представлений у детей дошкольного возраста сложи­лось в 80—90-е гг. XX вв. и первые годы нового столетия под вли­янием развития идей обучения детей математике, а также реорга­низации всей системы образования. Уже в 80-е гг. начали обсуждаться пути совершенствования как содержания, так и ме­тодов обучения детей дошкольного возраста математике. В каче­стве негативного момента отмечалась ориентировка на выработку у детей предметных действий, в основном связанных со счетом и простейшими вычислениями, без должного уровня их обобщен­ности. Такой подход не обеспечивал подготовку к усвоению мате­матических понятий в дальнейшем обучении.

Специалисты выясняли возможности интенсификации и оп­тимизации обучения, способствующие общему и математическо­му развитию ребенка, отмечали необходимость повышения теоре­тического уровня осваиваемых детьми знаний. Это требовало ре­конструкции программы обучения, в том числе переосмысления системы представлений, последовательности их формирова­ния. Начались интенсивные поиски путей обогащения содержа­ния обучения. Решение этих сложных проблем осуществлялось по-разному.

Психологи в качестве основания для формирования начальных математических представлений и понятий предлагали различные предметные действия. П. Я. Гальперин разработал линию форми­рования начальных математических понятий и действий, постро­енную на введении мерки и определении единицы через отноше­ние к мерке. Число при таком подходе воспринимается ребенком как результат измерения, как отношение измеряемой величины к избранной мерке. На основе этих и других исследований в програм­му обучения детей была включена тема «Освоение величин».

В исследовании В. В. Давыдова был раскрыт психологический механизм счета как умственной деятельности и намечены пути формирования понятия числа через освоение детьми действий уравнивания, комплектования и измерения. Генезис понятия числа рассматривался на основе кратного отношения любой вели­чины (непрерывной и дискретной) к ее части.

В отличие от традиционной методики ознакомления с числом (число — результат счета) новым явился способ введения самого понятия: число как отношение измеряемой величины к единице измерения (условная мерка), т. е. число — результат измерения.

Анализ содержания обучения дошкольников с точки зрения новых задач привел исследователей к выводу о необходимости учить детей обобщенным способам решения познавательных задач, усвоению связей, зависимостей, отношений и логических опера­ций (классификации и сериации). Для этого предлагались и своеоб­разные средства: модели, схематические рисунки и изображения, отражающие наиболее существенное в познаваемом содержании.

Математики-методисты (А. И. Маркушевич, Ж. Папи и др.) настаивали на значительном пересмотре содержания знаний для для детей 6-летнего возраста, насыщении его некоторыми новыми представлениями, относящимися к множествам, комбинаторике, графам, вероятности и т. д.

Методику первоначального обучения А. И. Маркушевич ре­комендовал строить, основываясь на положениях теории мно­жеств. Он считал необходимым обучать дошкольников простей­шим операциям с множествами (объединение, пересечение, до­полнение), развивать у них количественные и пространственные представления.

Ж. Папи (бельгийский математик) разработал интересную ме­тодику формирования у детей представлений об отношениях, функциях, отображении, порядке и др. с использованием много­цветных графов.

Идеи простейшей предлогической подготовки дошкольников разрабатывались в Могилевском педагогическом институте под руководством А. А. Столяра. Методика введения детей в мир ло­гико-математических представлений — свойства, отношения, множества, операции над множествами, логические операции (отрицание, конъюнкция, дизъюнкция) — осуществлялась с по­мощью специальной серии обучающих игр.

В педагогических исследованиях выяснялись возможности раз­вития у детей представлений о величине, установления взаимосвя­зей между счетом и измерением; апробировались приемы обучения (Р. Л. Березина, Н. Г. Белоус, 3. Е. Лебедева, Р. Л. Непомнящая, Е. В. Проскура, Л. А. Левинова, Т. В. Тарунтаева, Е. И. Щербакова).

Возможности формирования количественных представлений у детей раннего возраста и пути их совершенствования у детей дошкольного возраста изучены В. В.Даниловой, Л. И. Ермолае­вой, Е. А. Тархановой.

Содержание и приемы освоения пространственно-временных отношений определены на основе исследований Т. А. Мусейибо-вой, К. В. Назаренко, Т. Д. Рихтерман и др.

Методы и приемы математического развития детей с помо­щью игры были разработаны З.А.Грачевой (Михайловой), Т. Н. Игнатовой, А. А. Смоленцевой, И. И. Щербининой и др.

Исследовались возможности использования наглядного моде­лирования в процессе обучения решению арифметических задач (Н. И. Непомнящая), познания детьми количественных и функцио­нальных зависимостей (Л.Н. Бондаренко, Р. Л. Непомнящая, А. И. Кириллова), способности дошкольников к наглядному моде­лированию при освоении пространственных отношений (Р. И. Го­ворова, О. М. Дьяченко, Т. В. Лаврентьева, Л. М. Хализева).

Комплексный подход в обучении, эффективные дидактиче­ские средства, обогащенное содержание и разнообразные приемы обучения нашли отражение в конспектах занятий по формирова­нию математических представлений и методических рекоменда­циях по их использованию, разработанных Л. С. Метлиной.

Поиск путей совершенствования методики обучения матема­тике детей дошкольного возраста осуществлялся и в других странах.

М.Фидлер (Польша), Э.Дум, Д. Альтхауз (Германия) особое значение придавали развитию представлений о числах в процессе практических действий с множествами предметов. Предлагаемые ими содержание и приемы обучения (целенаправленные игры и упражнения) помогали детям овладеть умениями классифициро­вать и упорядочивать предметы по различным признакам, в том числе и по количеству.

Р. Грин и В. Лаксон (США) в качестве основы развития поня­тия числа и арифметических действий рассматривали понимание детьми количественных отношений на конкретных множествах предметов. Авторы уделяли большое внимание познанию детьми принципа сохранения количества в процессе практических дейст­вий по преобразованию дискретных и непрерывных величин.

Содержание математического развития в материнских школах Франции было направлено на освоение детьми классификации, отношений сходства, формирование понятий пространства и вре­мени (по материалам Т. Я. Миндлиной). Уделялось большое вни-[ание счету. Причем, по мнению французских специалистов, 1ети до 4 лет должны были учиться считать без вмешательства взрослого. Играя с водой, песком и прочими веществами, малыши осваивали понятия о количестве и величине на сенсорном уровне, [я детей старше 4 лет рекомендовались систематические упраж­нения, направленные на формирование представлений о числах.

Французские педагоги материнских школ считали, что спо­собность к математике зависит от качества обучения. Ими была разработана система логических игр для детей разного возраста. В процессе игры у детей развивались способность к рассуждению, пониманию, самоконтролю, умение переносить усвоенное в новые ситуации. Дети 5—6 лет осваивали элементарные матема­тические понятия, в том числе понятие множества, используя ма­тематический язык; учились точно и кратко выражать свои мысли, обнаруживать и исправлять ошибки, допущенные другим ребенком.

Таким образом, в начале 90-х гг. XX в. наметилось несколько основных науч­ных направлений в теории и методике развития математических представлений у детей дошкольного возраста.

 


<== предыдущая лекция | следующая лекция ==>
Математическое развитие дошкольников средствами «веселой» математики | Формирование системы элементарных математических представлений
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 3369; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.