Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Описание матричной игры

Тема 2. Антагонистические игры

 

Наиболее разработанной в теории игр является конечная парная игра с нулевой суммой (антагонистическая игра двух лиц или двух коалиций), называемая матричной игрой.

Рассмотрим такую игру G, в которой участвуют два игрока А и В, имеющие антагонистические интересы: выигрыш одного игрока равен проигрышу второго. Так как выигрыш игрока А равен выигрышу игрока В с обратным знаком, можем интересоваться только выигрышем а игрока А. Естественно, игрок А хочет максимизировать а, а игрок В - минимизировать а. Для простаты отождествим себя мысленно с одним из игроков (пусть это будет игрок А), тогда будем называть игрока В - “противник” (разумеется, каких-то реальных преимуществ для А из этого не вытекает).

Пусть у игрока А имеется m возможных стратегий А1, А2,..., Аm, а у противника - n возможных стратегий В1, В2,..., Bn (такая игра называется игрой m х n).

Обозначим через aij выигрыш игрока А, в случае, если он воспользуется стратегией Аi, а игрок В - стратегией Вj. Предполагается, что выигрыш aij известен. Тогда мы можем составить прямоугольную таблицу (матрицу), в которой перечислены стратегии игроков и соответствующие выигрыши (рис.2.1).

Bj   Ai   B1   B2   ...   Bn
A1 a11 a12 ... a1n
A2 a21 a22 ... a2n
... ... ... ... ...
Am am1 am2 ... amn

Рис. 2.1.

 

 

Игра 1. Вариант игры «Морра»

Игра состоит в том, что каждый из двух игроков независимо друг от друга выбирает определенную сторону монеты (“герб” или “решка”), затем одновременно называют свой выбор. Если игроки выбрали одну и ту же сторону монеты, то второй игрок платит первому одну гривну, если разные, то первый платит второму такую же сумму. Легко видеть, что матрица выигрышей (платежная матрица) этой игры имеет вид

 

Bj   Ai   B1   B2
A1   -1
A2 -1  

 

Здесь стратегии А1 и В1 - игроки А и В выбирают “герб”, а А2 и В2 - игроки А и В выбирают “решку”.

Нетривиальность сформулированной задачи, как и любой матричной игры, состоит в том, что каждый из игроков делает свой выбор независимо друг от друга.

 

Игра 2. Борьба за рынки

Фирмы А и В производят одинаковый товар и в настоящее время каждая «контролирует» 50% рынка. Улучшив качество товара, обе фирмы собираются развернуть рекламные кампании. При этом, приобретение новых покупателей одной фирмой сопровождается потерей этих покупателей другой фирмой. Исследование показало, что 60% потенциальных покупателей получают информацию через телевидение, 30% - через газеты и 10% - через радиовещание.

Задача каждой фирмы – выбрать стратегию рекламной кампании.

В данной игре у каждого из игроков по три стратегии:

А1, В1 – рекламировать товар через телевидение;

А2, В2 – через газеты;

А3, В3 – через радиовещание.

Поскольку это игра с нулевой суммой, то матрицу выигрышей фирмы А можно представить в следующем виде:

 

    B1   B2   B3
A1      
A2 -30    
A3 -50 -20  

 

где aij – количество покупателей товара фирмы А в процентах, на которое оно увеличивается, если фирма А применяет стратегию А i, а фирма В – стратегию В j.

<== предыдущая лекция | следующая лекция ==>
Примеры игр | Пример 1. Принцип максимина в антагонистических играх
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 387; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.