Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение. В антагонистической игре пара стратегий (Аi, Вj) называется равновесной или устойчивой, если ни одному из игроков не выгодно отходить от своей стратегии

Чистые и смешанные стратегии

 

Если в игре каждый из противников применяет только одну и ту же стратегию, то про саму игру в этом случае говорят, что она происходит в чистых стратегиях, а используемые игроком А и игроком В пара стратегий называются чистыми стратегиями.

 

Применять чистые стратегии имеет смысл тогда, когда игроки А и В располагают сведениями о действиях друг друга и достигнутых результатах. Если допустим, что хотя бы одна из сторон не знает о поведении противника, то идея равновесия нарушается, и игра ведется бессистемно.

В рассмотренном в §2.2 примере 1 максиминные чистые стратегии А 4 и В 5 неустойчивы по отношению к информации о поведении противника; они не обладают свойством равновесия.

Действительно, предположим, что мы узнали, что противник придерживается стратегии В 3. Используя эту информацию, выберем стратегию А 1 и получим больший выигрыш, равный 7. Но если противник узнал, что наша стратегия А 1, он выберет стратегию В 4, сведя наш выигрыш к 4.

Таким образом, в рассмотренном примере максиминные чистые стратегии оказались неустойчивы по отношению к информации о поведении другой стороны. Но это не всегда так.

Рассмотрим матричную игру G (3х4), платежная матрица которой приведена на рис 2.3.

 

Bj   Ai   B1   B2   B3   B4   a i
A1          
A2          
A3          
b j          

 

Рис. 2.3

 

В этом примере нижняя цена игры равна верхней: a=b=9, т.е. игра имеет седловую точку.

Оказывается, что в этом случае максиминные стратегии А 2 и В 2 будут устойчивыми по отношению к информации о поведении противника.

Действительно, пусть игрок А узнал, что противник применяет стратегию В 2. Но и в этом случае игрок А будет по-прежнему придерживаться стратегии А 2, потому что любое отступление от стратегии А 2 только уменьшит выигрыш. Равным образом, информация, полученная игроком В, не заставит его отступить от своей стратегии В 2.

Пара стратегий А 2 и В 2 обладает свойством устойчивости, а выигрыш (в рассматриваемом примере он равен 9), достигаемый при этой паре стратегий, оказывается седловой точкой платежной матрицы.

<== предыдущая лекция | следующая лекция ==>
Пример 1. Принцип максимина в антагонистических играх | Тема 3. Решение игр в смешанных стратегиях. Величина называется ценой игры
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 856; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.