Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Функции от множеств




Введем обозначения:

· Пусть , тогда для множества .

· Пусть , тогда для множеств .

Свойства функций от множеств:

· Если , то .

· Если , то .

· Если , то .


Свойства потока на множествах узлов:

· для любых ;

· для любого .

Определение 2.1.3. Узел называется истоком сети , если для любого нетривиального потока выполнено: .

Определение 2.1.4. Узел называется стоком сети , если для любого нетривиального потока выполнено: .

В дальнейшем будем предполагать, что в сети имеется единственный исток и единственный сток (т. е. любой поток в сети вытекает из истока и втекает в сток). Тогда, в силу кососимметричности потока, для всех выполняется

(2.1)

Определение 2.1.5. Узлы , такие что , и выполняется условие (2.1), называются промежуточными узлами.

Пример 2.1.2 (промежуточных узлов, см. рис. 2.1).

.

Определение 2.1.6. Пара множеств называется сечением сети , если выполнено: , , .




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 338; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.