Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интегрирование иррациональных функций




I. выделяем полный квадрат и делаем замену (см § 10) интеграл I1 искомый интеграл сводится к виду

(ф-ла 20) и (ф-ла 17)

Пример 1) выделим полный квадрат

2) выделяем полный квадрат:

II делаем так, чтобы в числителе была производная знаменателя и разбиваем на два интеграла

3)

Выделим полный квадрат

Итак

ф-ла ф-ла 20

2а 20

-

III. Интегралы вида , где R рациональная функция своих аргументов.

Пусть k наименьший общий знаменатель дробей

подстановка

Тогда каждая дробная степень х выражается через целую степень t и, следовательно, подынтегральная функция преобразуется в рациональную степень t

4) наименьшим общим знаменателем дробей является число 6, поэтому замена

IV. Интегралы вида

Пусть k – наименьший общий знаменатель дробей , тогда

5)

V. Интегралы вида заменой сводится к виду

6)

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 389; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.