Частный случай Если х принадлежит интервалу (a;b)
Вывод: Рассмотренные свойства-
1. Вся кривая распределения лежит не ниже оси ox .
2. Площадь криволинейной трапеции, ограниченная кривой распределения и осью ox равна 1.
Пример:
Случайная величина задана функцией
Найти вероятность попадания величины на участок от 0 до p/4. Найти значение коэффициента a и построить кривую распределения.
P (0<x<p/4)=
Нахождение функции распределения по известной функции f(x).
Установим выражение функции распределения через плотность распределения.
По определению f(x) – это есть вероятность того, что F(x)=P(X)<x . Чтобы применить формулу запишем
F(x)=P(X<x)=P(-¥<X<x),
а по формуле P(a<x<b)= , тогда мы можем записать, что
F(x)=
Пример.
Плотность распределения x задана формулой:
Найти F(x)-?
Дата добавления: 2014-01-07 ; Просмотров: 420 ; Нарушение авторских прав? ; Мы поможем в написании вашей работы!
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет