КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 8. Минеральное питание растений
План лекции (4часа): 1. Общие представления о минеральном питании 2. Макроэлементы и микроэлементы 3. Экология минерального питания Представления о почвенном питании растений начали складываться в святи с развитием растениеводства. Уже и VI - V тысячелетии до новой эры возделывались пшеница, ячмень, рожь, кукуруза, лен, конопля, многие огородные культуры и плодовые деревья, а зола, ил и навоз использовались как средства, повышающие плодородие почвы. Первый физиологический эксперимент с целью изучения питания растений был проведен голландским естествоиспытателем Я. Б. ван Гельмонтом в 1629г. Он посадил в глиняный сосуд, содержащий 91 кг сухой почвы, ивовую ветвь массой 2,25 кг и регулярно поливал почву дождевой водой. Через 5 лет растение и почва были взвешены отдельно. Оказалось, что ива весила 77 кг (прибавка около 75 кг), а масса сухой почвы уменьшилась всего на 56,6 г. Таким образом, масса растения увеличилась в 33 раза, не считая ежегодно опадавших листьев. Ван Гельмонт сделал вывод, что вся растительная масса была создана за счет воды, вносившейся в сосуд при поливе. Этот опыт послужил основой для «водной теории» питания растений, которая довольно долго держалась в ботанике. Однако постепенно накапливались данные о роли минеральных элементов в питании растений. Один из основоположников отечественной агрономии А. Т. Болотов наметил основные принципы минеральною питания растений. В 1770 г. вышла его книга «Об удобрении земель» — первая русская монография по агрохимии. В ней он писал, что пища растений в почве «состоит в воде и некоторых особлевых земляных или паче минеральных частичках...». Болотов разрабоки приемы внесения удобрений в почву и в однойиз статей перечислил 53 вида удобрении, пригодных для применениявсельском хозяйстве. Швейцарский естествоиспытатель Н.Т. Соссюр систематизировал известные в то время данныео питании растений и установил, что почва снабжаетрастения азотом и минеральными элементами. При выращивании растении из семян только на дистиллированной водеприрост воды не набдюдается. В своем труде «Химическиеисследования растений» (1804) он обратил внимание на то чторазличные соли поглащаются корнями из водногораствора с неодинаковой скоростью. Французский агрохимик Ж. Б.Буссенго (1837) показал, что растения можно выращивать и на чистом песке, если вносишь в него минеральные соли(золу и селитру). Немецкий химик Ю. Либих — один из основателей агрохимии возражая против гумусовойтеории, в 1840 г. опубликовал книгу «Химия в приложениикземледелию и физиологии», где обосновал теорию минерального питания растений. По этой теории основой плодородия являются минеральные вещества почвы. Либих считал, что перегной нужен лишь для образования СО2, который ускоряет выветривание материнской горной породы и увеличивает культурный слой почвы. Он первым предложил вносить в качестве удобрений чистые минеральные вещества. Правильно оценивая значение минеральных элементов в питании растений. Либих в то же время считал что растения поглощают азот из воздуха в виде аммиака. Лишь позднее, в 1856 г., под давлением неопровержимых фактов Либих вынужден был признать, что источником азота для минеральною питания растений могут быть нитраты. Окончательно опровергли «гумусовую теорию» опыты И. Кнопа и Ю. Сакса (1859). Содержание менеральных элементов в растениях Растения способны поглощать из окружающей среды
Среди этих основных питательных элементов лишь 16 являются собственно минеральными, так как С, Н и О поступают в растения преимущественно в виде СО2, О 2 и Н2О. Элементы Na, Si и Со приведены в скобках, поскольку их необходимость для всех высших растений пока не установлена. Натрий поглощается в относительно высоких количествах некоторыми видами сем. Chenopodiaceae (маревых}, в частности свеклой, а также видами, адаптированными к условиям засоления, и в этом случае является необходимым. То же справедливо для кремния, который в особенно больших количествах встречается в соломине злаковых, для риса он является необходимым элементом. Первые четыре элемента - С, Н. О, N — называют органогенами. Углерод в среднем составляет 45% сухой массы тканей, кислород — 42, водород — 6,5 и азот — 1.5. а все вместе — 95%. Оставшиеся 5% приходятся на зольные вещества: Р, S, К, Са, Мg, Ре, А1, Si, Na и др. О минеральном составе растений обычно судят но анализу золы, остающейся после сжигания органического вещества растений. Содержание минеральных элементов (или их окислов) в растении выражают, как правило, в процентах по отношению к массе сухого вещества или в процентах к массе золы. Перечисленные выше вещества золы относятся к макроэлементам. Элементы, которые присутствуют в тканях в концентрациях 0,001 % и ниже от сухой массы тканей, называют микроэлементами. Некоторые из них играют важную роль в обмене веществ (Мg, Сu, Zn, Со, Мо, В, С1). Содержание того или другого элемента в тканях растений непостоянно и может сильно изменяться под влиянием факторов внешней среды. Например. Аl, Ni, F и другие могут накапливаться в растениях до токсическою уровня. Среди высших растений встречаются виды, резко различающиеся по содержанию в тканях такпх элементов, как Na, о чем уже говорилось, и Са, в связи с чем выделяют группы расстении натриефилов, кальциефилов (большинство бобовых, в том числе фасоль, бобы, клевер), кальциефобов (люпин, белоус, щавелек и др.). Эти видовые особенности обусловлены характером почв в местах происхождения и обитания видов, определенной генетически закрепленной ролью, которую укачанные элементы играют в обмене веществ растений. Наиболее богаты минеральными элементами листья, у которых зола может составлять от 2 до 15% от массы сухого вещества. Минимальное содержание золы (0.4—1%) обнаружено в стволах древесных.
Азот. Для растений азот - дефицитный элемент, Если некоторые микроорганизмы способны усваивать атмосферный азот, то растениямогут использовать лишь азот минеральный, а животные — только азот органическою происхождения, да и то не любой. Например, мочевина животным организмом непосредственно неусваивается. В то время как животные относятся к азоту довольно расточительно, выделяя мочевую кислоту. мочевину и др. азотсодержащие вещества, растения почти не выделяют азотистые соединения как продукты отброса и там где то возможно, азотистые соединения заменены на безазотистые вещества. Например, у растений в состав полиеахаридов клеточных оболочек не входят гекеозамины характерные для мукополисахаридов животных и хитина членистоногих и грибов. При недостатке азота в среде обитания тормозится рост растений, ослабляется образование боковых побегов и кущение у злаков, наблюдается мелколистность. Одновременно уменьшается ветвление корней, но соотношение массы корней и надземной части может увеличиваться. Одно из ранних проявлений азотного дефицит — бледно-зеленая окраска листьев, вызванная ослаблением синтеза хлорофилла. Длительное азотное голодание ведет к гидролизу белков и разрушению хлорофилла прежде всею в нижних, более старых листьях и оттоку растворимых соединений азота к более молодым листьям и почкам роста. Вследствие разрушения хлорофилла окраска нижних листьев в зависимости от вида растения приобретает желто-оранжевые или красные тона, а при сильно выраженном азотном дефиците возможно появление некрозов, высыхание и отмирание тканей. Азотное голодание приводит к сокращению периода вегетативного роста и более раннему созреванию семян. Фосфор, как и азот, — важнейший элемент питания растений. Он поглощается ими в виде высшего окисла РО4~ и не изменяется, включаясь в органические соединения. В растительных тканях копнет рация фосфора составляет 0,2—1,3% от сухой массы растенияЗапасы фосфора в пахотном слое почвы относительно невелики, порядка 2,3—4,4 т/га (в пересчете на Р2О5). Из этого количества 2/з приходится на минеральные соли ортофосфорной кислоты (Н3РО4), а '/з ~~ на органические соединения, содержащие фосфор (органические остатки, гумус, фитат и др.). Фитаты составляют до половины органического фосфора почвы. Большая часть фосфорных соединений слабо растворима в почвенном растворе. Это, с одной стороны, снижает потери фосфора из почвы за счет вымывания, но, с другой, -ограничивает возможности использования его растениями.Основной природный источник поступления фосфора в пахотный слой — выветривание почвообразующей породы, где он содержится главным образом в виде апатитов ЗСа3(РО4)2 • СаР2 и др. Трех замещенные фосфорные соли кальция и магния и соли полуторных оксидов железа и алюминия (FеРО4. А1РО4 в кислых почвах) слаборастворимы и малодоступны для растений. Двух замешенные и особенно однозамещенные соли кальция и магния, тем более соли одновалентных катионов и свободная ортофосфорная кислота растворимы в воде и используются растениями как главный источник фосфора в почвенном растворе. Сера входит в число основных питательных элементов, необходимых для жизни растения. Она поступает в них главным образом в виде сульфата. Ее содержание в растительных тканях относительно невелико и составляет в,2— 1,0% в расчете на сухую массу. Потребность в сере высока у растений, богатых белками, например у бобовых (люцерна, клевер), но особенно сильно она выражена у представителей семейства крестоцветных, которые в больших количествах синтезируют масла. Недостаточное снабжение растений серой тормозит синтез серосодержащих аминокислот и белков, снижает фотосинтез и скорость роста растений, особенно надземной части. В острых случаях нарушается формирование хлоропласте» и возможен их распад. Симптомы дефицита серы побледнение и пожелтение листьев — похожи на признаки недостатка азота, но сначала появляются у самых молодых лис и, ев. Это показывает, что отток серы из более старых листьев не может компенсировать недостаточное снабжение растений серой через корпи. Калий — один из самых необходимых элементов минерального питания растений о содержание в тканях составляет среднем 0,5—1.2% в расчете на сухую массу. Долгое время основным источников получения калия служила зола, что нашло отражение в названии элемента (происходит от слова — тигельная зола). Содержание калия в клетке в 100—1000 раз превышает его уровень во внешней среде. Его гораздо больше в тканях, чем других катионов. Запасы калия в почве больше содержания фосфора в 8 — 40 раз, а азота — в 5 — 50 раз. В почве калий может находиться в следующих формах: в составе кристаллической решетки минералов, в обменном и необменном состоянии в коллоидных частицах, в составе пожнивных остатков и микроорганизмах, в виде минеральных солей почвенного раствора. Наилучшим источником питания являются растворимые соли калия (0,5 — 2% от валовых запасов в почве). По мере потребления подвижных форм калия запасы его в почве могут восполняться за счет обменных форм, а при уменьшении последних — за счет необменных, фиксированных форм калия. Попеременное подсушивание и увлажнение почвы, а также деятельность корневой системы растений и микроорганизмов способствуют переходу калия в доступные формы. В растениях калий в наибольшем количестве сосредоточен в молодых, растущих тканях, характеризующихся высоким уровнем обмена веществ: меристемах, камбии, молодых листьях, побегах, почках. В клетках калий присутствует в основном в ионной форме, он не входит в состав органических соединений, имеет высокую подвижность и поэтому легко регулируется. Передвижению калия из старых в молодые листья способствует натрий, который может замещать его в тканях растений, прекративших рост. В растительных клетках около 80% калия содержится в вакуолях. Он составляет основную часть катионов клеточного сока. Поэтому калий может вымываться из растений дождями, особенно из старых листьев. Небольшая часть этого катиона (около 1 %) прочно связана с белками митохондрий и хлоропластов. Калий стабилизирует структуру этих органелл. При калиевом голодании нарушается ламеллярно транулярное строение хлоропластов и дезорганизуются мембранные структуры митохондрий. До 20% калия клетки адсорбируется на коллоидах цитоплазмы. На свету прочность связи калия с коллоидами выше, чем в темноте. В ночное время может наблюдаться даже выделение калия через корневую систему растений. Калий служит основным прогивоионом для нейтрализации отрицательных зарядов неорганических и органических анионов. Именно присутствие калия в значительной степени определяет коллоидно-химические свойства цитоплазмы, что существенно влияет практически на все процессы в клетке. Калий способствует поддержанию состояния гидратации коллоидов цитоплазмы, регулируя ее водоудерживаюшую способность. Увеличение гидратации белков и водоудерживающей способности цитоплазмы повышает устойчивость растений к засухе и морозам. Кальций. Общее содержание кальция у разных видов растений составляет 5 — 30 мг на 1 г сухой массы. Рас гения по отношению к кальцию деляг на три группы: калъциефилы, калъциефобы и нейтральные виды. Много кальция содержат бобовые, гречиха, подсолнечник, картофель, капуста, конопля, гораздо меньше — зерновые, лен, сахарная свекла. В тканях двудольных растений этого элемента, как правило, больше, чем у однодольных. Кальций накапливается в старых органах и тканях. Это связано с тем, что транспорт его осуществляется по ксилеме и реутилизация затруднена. При старении клеток или снижении их физиологической активности кальций из цитоплазмы перемещается в вакуоль и откладывается в виде нерастворимых солей щавелевой, лимонной и других кислот. Образующиеся кристаллические включения затрудняют подвижность и возможность повторного использования этого кат Кальций выполняет многообразные функции в обмене веществ клеток и организма в целом. Они связаны с его влиянием на структуру мембран, ионные потоки через них и биоэлектрические явления, на перестройки цитоскелета, процессы поляризации клеток и тканей и др. Кальций активирует ряд ферментных систем клетки: дегидрогеназы (глутаматдегидрогеназа, малатдетидрогеназа, глюкозо-6-фосфагдегидрогеназа. зависимая изоцитратдегидрогеназа), амилазу, аденилат- и аргининкиназы, липазы, фосфатазы. При этом кальций может способствовать агрегации субъединиц белка, служить мостиком между ферментом и субстратом, влиять на состояние аллостерического центра фермента. Избыток кальция в ионной форме угнетает окислительное фосфорилирование и фотофосфорилирование иона. От недостатка кальция в первую очередь страдают молодые меристематические ткани и корневая система. У делящихся клеток не образуются новые клеточные стенки и в результате возникают многоядерные клетки, характерные для меристем с дефицитом кальция. Прекращается образование боковых корней и корневых волосков, замедляется рост корней. Недостаток кальция приводит к набуханию пектиновых веществ, что вызывает клеточных стенок и разрушение клеток. В результате корни, листья, отдельные участки стебля зашивают и отмирают. Кончики и края листьев вначале белею 1. а затем чернеют, листовые пластинки и скручиваются. На плодах, в запасающих и сосудистых тканях некротические участки. Магний. По содержанию в растениях магний занимает четвертое место после калия, азота и кальция. У высших растений среднее его содержание в расчетена сухую массу 0.02 — 3.1% у водорослей 3,0 — 3,5%. Особенно мною его в растениях короткого дня — кукурузе, просе, сорго, конопле, а также в картофеле, свекле, табаке и бобовых. 1 кг свежих листьев содержит 300-800 мг магния, из них 30-80 мг (т. е. 1/10 часть) входит в состав хлорофилла. Особенно много магния в молодых клетках и растущих тканях, а также в генеративных органах и запасающих тканях. В зерновках магний накапливается в зародыше, где его уровень в несколько раз превышает содержание в эндосперме и кожуре (для кукурузы соответственно 1,6, 0,04 и 0,19% на сухую массу). Действие магния на другие участки обмена веществ чаще всего связано с его способностью регулировать работу ферментов и значение его для ряда ферментов уникально. Недостаток магния приводит к уменьшению содержания фосфора в растениях, даже если фосфаты в достаточных количествах имеются в питательном субстрате, тем более, что транспортируется фосфор по растению в основном в органической форме. Поэтому дефицит магния будет тормозить образование фосфорорганических соединений и соответственно распределение фосфора в растительном организме. При недостатке магния нарушается формирование пластид: матрикс хлоропластов просветляется, граны слипаются. Ламеллы стромы разрываются и не образуют единой структуры, вместо них появляется много везикул. При магниевом голодании между зелеными жилками появляются пятна и полосы светло-зеленого, а затем желтого цвета. Края листовых пластинок приобретают желтый, оранжевый, красный или темно-красный цвет, и такая «мраморная» окраска листьев наряду хлорозом служит характерным признаком нехватки магния. На более поздних стадиях магниевого голодания светло-желтые и беловатые полоски отмечаются и на молодых листьях, свидетельствуя о разрушении в них хлоропласте», а затем и каротиноидов, причем зоны листа, прилежащие к сосудам, дольше остаются зелеными. Впоследствии развиваются хлороз и некроз, затрагивая в первую очередь верхушки листьев. Железо. Среднее содержание железа в растениях составляет 0,02-0,08%. В составе соединений, содержащих гем (все цитохромы, каталаза. и в негемовой форме железо принимает участие в функционировании основных редокс-систем фотосинтеза и дыхания. Вместе с молибденом железо участвует в восстановлении нитратов и фиксации молекулярного азота клубеньковыми бактериями, входя в состав нитратредуктазы и нитрогеназы. Железо катализирует также начальные этапы синтеза хлорофилла (образование 8-аминолевулиновой кислоты и прогопорфиринов). Поэтому недостаточное поступление железа в растения в условиях переувлажнения и на карбонатных почвах приводит к снижению интенсивности дыхания и фотосинтеза и выражается в пожелтении листьев (хлороз) и быстром их опадении. Кремний обнаружен у всех растений. Особенно много его в клеточных стенках. Растения, накапливающие кремний, имеют прочные стебли. Недостаток кремния может задерживать рост злаков (кукуруза, овес, ячмень) и двудольных растений (огурцы, томаты, табак, бобы). Исключение кремния во время репродуктивной стадии вызывает уменьшение количества семян, при этом снижается число зрелых семян. При отсутствии в питательной среде кремния нарушается ультраструктура клеточных органелл. Алюминий также относится к макроэлементам, в которых нуждаются только некоторые растения. Предполагается, что он имеет большое значение в обмене веществ у гидрофитов. Интересно отметить, что этот катион концентрируют папоротники и чай. При недостатке алюминия у чайного листа наблюдается хлороз, однако высокие концентрации токсичны для расмений. В высоких дозах алюминий связывается в клетках с фосфором, что в итоге приводит к фосфорному голоданию растений.
Дата добавления: 2014-01-07; Просмотров: 3527; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |