КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Понятие о дифференциальном уравнении. Общее и частное решения
Теория дифференциальных уравнений возникла в конце 17 века под влиянием потребностей механики и других естественнонаучных дисциплин, по существу одновременно с интегральным и дифференциальным исчислением. Определение 1. Обыкновенным дифференциальным уравнением n-го порядка называется уравнение вида Определение 2. Функция Решить дифференциальное уравнение - это найти все его решения. Определение 3. График решения дифференциального уравнения называется интегральной кривой дифференциального уравнения. Определение 4. Обыкновенным дифференциальным уравнением 1 -го порядка называется уравнение вида Определение 5. Уравнение вида Как правило, любое дифференциальное уравнение имеет бесконечно много решений. Чтобы выделить из совокупности всех решений какое-либо одно, надо наложить дополнительные условия. Определение 6. Условие вида Геометрически это означает, что соответствующая интегральная кривая проходит через точку Определение 7. Общим решением дифференциального уравнения 1-го порядка 1) для любого 2) для каждой точки Определение 8. Решение, получаемое из общего решения при некотором значении параметра, называется частным решением дифференциального уравнения. Определение 9. Особым решением дифференциального уравнения называется всякое решение, которое не может быть получено из общего решения ни при каком значении параметра. Решение дифференциальных уравнений - очень сложная задача, и, вообще говоря, чем выше порядок уравнения, тем труднее указать способы решения уравнения. Даже для дифференциальных уравнений первого порядка удается лишь в небольшом числе частных случаев указать приемы нахождения общего решения. Более того, и в этих случаях искомое решение не всегда является элементарной функцией. Одна из основных задач теории дифференциальных уравнений, впервые изучавшаяся О. Коши, состоит в отыскании решения дифференциального уравнения, удовлетворяющего заданным начальным условиям. Например, всегда ли существует решение дифференциального уравнения Таким образом, функция должна удовлетворять некоторым требованиям. В следующей теореме содержится один из вариантов достаточных условий для существования и единственности решения дифференциального уравнения Теорема 1. Пусть функция Тогда в некотором интервале, содержащем х0, существует, и притом единственное, решение
Дата добавления: 2014-01-07; Просмотров: 1146; Нарушение авторских прав?; Мы поможем в написании вашей работы! |