Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Принцип действия и конструкция трансформаторов

На 9 семестр 2012/2013 учебного года

Название дисциплины I поток II поток
9.00 - 10.00 15.30 – 16.30  
Внутренние болезни (Гомельская центральная городская клин. больница, Ильича, 286) 03.09; 24.09; 22.10; 19.11; 10.12. 05.09; 26.09; 24.10; 21.11; 12.12.
Хирургические болезни (Гомельская центральная городская клин. больница, Ильича, 286) 04.09; 25.09; 16.10; 06.11; 27.11. 03.09; 24.09; 15.10; 05.11; 26.11.
Общественное здоровье и здравоохранение (Новый зал уч. корп. № 4, пр. Космонавтов, 70) 12.09; 03.10; 24.10; 28.11. 11.09; 02.10; 23.10; 27.11.
Педиатрия (Новый зал уч. корп. № 4, пр. Космонавтов, 70) 17.09; 01.10; 15.10; 29.10; 12.11; 26.11; 03.12. 19.09; 03.10; 17.10; 31.10; 14.11; 28.11; 05.12.
Психиатрия и наркология (Новый зал уч. корп. № 4, пр. Космонавтов, 70) 20.09; 01.11; 06.12; 13.12; 27.12.   21.09; 02.11; 07.12; 11.12; 28.12.
Инфекционные болезни (Новый зал уч. корп. № 4, пр. Космонавтов, 70) 11.09; 18.09; 09.10; 19.10; 30.10; 05.11; 20.11; 12.12; 18.12. 10.09; 17.09; 08.10; 18.10; 29.10; 06.11; 19.11; 10.12; 17.12.
Военно-полевая хирургия (Новый зал уч. корп. № 4, пр. Космонавтов, 70) 14.09; 28.09; 12.10; 26.10; 09.11; 23.11; 30.11; 14.12; 21.12; 28.12. 13.09; 27.09; 11.10; 25.10; 08.11; 22.11; 29.11; 13.12; 20.12; 26.12.
Гинекология (Новый зал уч. корп. № 4, пр. Космонавтов, 70) 10.09; 08.10; 17.12. 12.09; 10.10; 19.12.
Военно-полевая терапия (Гомельская центральная городская клин. больница, Ильича, 286) 06.09; 04.10; 18.10; 08.11; 29.11. 07.09; 05.10; 19.10; 09.11; 30.11.
Судебная медицина (Новый зал уч. корп. № 4, пр. Космонавтов, 70) 21.09; 21.11; 08.12; 11.12; 26.12. 20.09; 20.11; 06.12; 14.12; 27.12.
Урология (Новый зал уч. корп. № 4, пр. Космонавтов, 70) 19.09; 10.10; 31.10; 19.12. 18.09; 09.10; 30.10; 18.12.
Профессиональные болезни (Новый зал уч. корп. № 4, пр. Космонавтов, 70) 13.09; 27.09; 11.10; 25.10; 15.11; 22.11; 07.12; 20.12. 14.09; 28.09; 12.10; 26.10; 16.11; 23.11; 08.12; 21.12.
Онкология (Новый зал уч. корп. № 4, пр. Космонавтов, 70) 05.10; 02.11; 16.11. 04.10; 01.11; 15.11.
Клиническая иммунология аллергология (Госпиталь ИОВ) 07.09; 02.10; 23.10; 13.11; 04.12. 06.09; 01.10; 22.10; 12.11; 03.12.
Детская хирургия (Обл. клин. больница, Бр. Лизюковых, 5) 05.09; 26.09; 17.10; 14.11; 05.12. 04.09; 25.09; 16.10; 13.11; 04.12.

Декан факультета В.А.Подоляко

Начальник учебного отдела Н.В.Верхина

 

 
 

Т р а н с ф о р м а т о р о мназывается электромагнитное статическое устройство (аппарат), предназначенное для преобразования посредством электромагнитной индукции электрической энергии переменного тока одного напряжения (частоты) в электрическую энергию другого напряжения (частоты).

 

Рис. 1. Принцип действия однофазного трансформатора

Принцип действия трансформатора [1] основан на явлении электромагнитной индукции (рис. 1). Если одну из обмоток трансформатора подключить к источнику переменного напряжения , то по этой обмотке потечет переменный ток , который создаст в сердечнике переменный магнитный поток . Этот поток сцеплен как с одной, так и с другой обмоткой и, изменяясь, будет индуцировать в них ЭДС и . Так как в общем случае обмотки могут иметь различное число витков , то индуцируемые в них ЭДС будут отличаться по значению. В той обмотке, которая имеет большее число витков, индуцируемая ЭДС будет больше, чем в обмотке, имеющей меньшее число витков. Индуцируемая в первичной обмотке ЭДС примерно равна приложенному напряжению и будет почти полностью его уравновешивать. Ко вторичной обмотке подключаются различные потребители электроэнергии, которые будут являться нагрузкой для трансформатора. В этой обмотке под действием индуцируемой в ней ЭДС возникает ток , а на ее выводах установится напряжение , которые будут отличаться от тока и напряжения первичной обмотки. В этом случае магнитный поток создается токами обеих обмоток.

Трансформатор нельзя включать в сеть постоянного тока, т.к. в этом случае магнитный поток будет неизменным во времени и не будет индуцировать ЭДС в обмотках. Вследствие этого в первичной обмотке будет протекать большой ток, т.к. при отсутствии ЭДС он будет ограничиваться только относительно небольшим активным сопротивлением обмотки, что недопустимо во избежание перегорания обмотки.

Данное устройство чаще всего состоит из двух (а иногда и большего числа) взаимно неподвижных электрически не связанных между собой обмоток, расположенных на ферромагнитном магнитопроводе. Обмотки имеют между собой магнитную связь, осуществляемую переменным магнитным полем. Магнитопровод всегда выполняют ферромагнитным для усиления магнитной связи между обмотками.

Обмотка трансформатора, потребляющая энергию из сети, называется п е р в и ч н о й обмоткой (обмотка 1 на рис. 1), а обмотка, отдающая энергию в сеть, – в т о р и ч н о й (обмотка 2 на рис. 1). Обмотки трансформатора подключаются к сетям с различными напряжениями. Обмотка, предназначенная для присоединения к сети с более высоким напряжением, называется о б м о т к о й в ы с ш е г о н а п р я ж е н и я (ВН), а подсоединяемая к сети с меньшим напряжением – о б м о т к о й н и з ш е г о н а п р я ж е н и я (НН). Если вторичное напряжение меньше первичного, то трансформатор называется п о н и ж а ю щ и м, а если больше – п о в ы ш а ю щ и м. В зависимости от включения тех или иных обмоток к сети каждый трансформатор может быть как повышающим, так и понижающим.

Трансформаторы с двумя обмотками называются д в у х о б м о т о ч н ы- м и, с тремя – т р е х о б м о т о ч н ы м и. Изготавливаются и многообмоточные трансформаторы, которые имеют несколько первичных или вторичных обмоток. В зависимости от числа фаз трансформаторы подразделяются на о д н о ф а з н ы е, т р е х ф а з н ы е и м н о г о ф а з н ы е.

Наиболее широкое распространение получили трехфазные силовые трансформаторы, предназначенные для передачи и распределения электроэнергии, вырабатываемой на электростанциях. Силовые трансформаторы бывают м а с л я н ы е и с у х и е. В масляных трансформаторах сердечник с обмотками помещают в бак с трансформаторным маслом, которое выполняет одновременно роль электрической изоляции и охлаждающего агента. Однако трансформаторное масло является горючим, в связи с чем при аварии таких трансформаторов существует определенная опасность возникновения пожара. Поэтому в общественных и жилых зданиях, а также в ряде других случаев применяются сухие трансформаторы, охлаждение которых осуществляется воздухом.

М а г н и т о п р о в о д является конструктивной основой трансформатора и служит для проведения основного магнитного потока. Для уменьшения магнитного сопротивления по пути потока, а следовательно, и МДС и тока, необходимых для создания потока, магнитопровод выполняют из специальной электротехнической стали. Так как магнитный поток в трансформаторе изменяется во времени, то для уменьшения потерь от вихревых токов в магнитопроводе он собирается из отдельных электрически изолированных друг от друга листов толщиной 0,35 – 0,5 мм (в зависимости от частоты питающего напряжения). Обычно при частоте питающей сети толщина листов составляет 0,35 мм. Изоляция листов осуществляется чаще всего с помощью лаковой пленки, которая наносится с двух сторон листа.

В магнитопроводе различают стержни и ярма.

С т е р ж е н ь – это та часть магнитопровода, на которой располагаются обмотки.

Я р м о – часть, не несущая обмоток и служащая для замыкания цепи.

В зависимости от взаимного расположения стержней, ярм и обмоток магнитопроводы разделяют на с т е р ж н е в ы е и б р о н е в ы е (рис. 2).

В стержневых магнитопроводах ярма прилегают к торцевым поверхностям обмоток, не охватывая их боковых поверхностей (рис. 2(а)). В броневых магнитопроводах ярма охватывают не только торцевые, но и боковые поверхности обмоток, как бы закрывая их «броней» (рис. 2(б)).

 
 

 


Рис. 2. Однофазный стержневой (а) и броневой (б) трансформатор

 

В броневом магнитопроводе (рис. 2(б)) имеется один стержень и два ярма, охватывающих обмотки. По каждому ярму замыкается половина магнитного потока стержня, поэтому площадь поперечного сечения каждого ярма будет в 2 раза меньше площади стержня.

Магнитопровод стержневого трансформатора (рис. 2(а)) имеет два стержня, на которых располагаются по половине обмоток 1 и 2. Половины каждой из обмоток соединяются между собой последовательно или параллельно. При таком расположении обмоток уменьшаются потоки рассеяния и улучшаются характеристики трансформатора.

По способу сочленения стержней с ярмами различают трансформаторы со с т ы к о в ы м и (рис. 3) и ш и х т о в а н н ы м и в п е р е п л е т (рис. 4) магнитопроводами.

 
 

 

 


Рис. 3. Стыковая конструкция магнитопровода однофазного (а)

и трехфазного (б) трансформатора

 

В первом случае стержни и ярма выполняются и скрепляются раздельно, и при сборке магнитопровода стержни с размещенными на них обмотками устанавливаются встык с ярмами и стягиваются специальными стяжными шпильками. В местах стыка во избежание замыкания листов и возникновения больших вихревых токов, вызывающих увеличение потерь и чрезмерное повышение температуры стали, устанавливаются изоляционные прокладки.

При стыковой конструкции наличие немагнитных зазоров в местах стыков вызывает заметное увеличение магнитного сопротивления сердечника и вследствие этого – увеличение намагничивающего тока. Кроме того, наличие изоляционных прокладок не дает полной гарантии от возможности замыкания листов стали. Поэтому стыковые сердечники применяются редко.

Во втором случае сборка магнитопровода ведется путем чередования листов, т.е. стержни и ярма собираются вместе как цельная конструкция. В результате такой сборки после стяжки ярм прессующими балками и стержней бандажами из стеклоленты получается остов трансформатора, не требующий каких-либо добавочных креплений.

 
 

 

 


Рис. 4. Укладка листов стали шихтованных магнитопроводов

однофазных (а) и трехфазных (б) трансформаторов

О с т о в о м трансформатора называется магнитопровод вместе со всемиконструкциями и деталями, служащими для скрепления его отдельных частей.

Вследствие резко выраженной анизотропии магнитных свойств холоднокатаной стали улучшение ее характеристик наблюдается только при совпадении линий индукции с направлением проката. При их несовпадении происходит резкое ухудшение характеристик. Поэтому при сборке магнитопровода из этой стали листы штампуются и укладываются так, чтобы поток проходил в них по направлению проката. Если взять листы прямоугольной формы, то в местах, где линии магнитного поля поворачиваются на 90º, будет наблюдаться увеличение потерь и падения магнитного напряжения, что приведет к ухудшению характеристик трансформатора. Во избежание этого при сборке магнитопровода из холоднокатаной стали применяют косые стыки (рис. 5).

После сборки шихтованного в переплет магнитопровода листы верхнего ярма вынимаются (расшихтовываются), на стержнях размещаются обмотки, после чего ярмо снова зашихтовывается.

 
 

 


Рис. 5. Косые стыки при сборке магнитопровода

Стержни магнитопровода трансформатора в поперечном сечении имеют форму с т у п е н ч а т о й ф и г у р ы или прямоугольника, вписанной в окружность с определенным диаметром (рис. 6(б)). Число ступеней фигуры увеличивается с возрастанием мощности трансформатора. Увеличение числа ступеней увеличивает заполнение площади круга площадью ступенчатой фигуры, но одновременно увеличивает число пластин, необходимых для сборки стержня. В мощных трансформаторах в сечении магнитопровода предусматриваются каналы для его охлаждения.

 
 

 

 


Рис. 6. Поперечные сечения ярем (а) и стержней (б) трансформаторов

При стержнях, имеющих поперечное сечение, приближающееся к кругу, обмотки будут иметь вид полых цилиндров. При такой конструктивной форме обмотки (по сравнению с прямоугольной) сокращается расход материалов на ее изготовление, увеличивается электрическая и механическая прочность, но усложняется технологический процесс ее изготовления. Прямоугольное сечение стержней применяется иногда в трансформаторах броневого типа и трансформаторах небольшой мощности.

Форма сечения ярма и его сочленение со стержнем выбираются с учетом обеспечения равномерного распределения магнитного потока в сечении сердечника. Равномерность распределения магнитного потока между пакетами можно получить, если ярмо будет иметь число ступеней, равное числу ступеней стержня. Для упрощения технологии изготовления ярм иногда число ступеней у них берут меньше, чем у стержней (рис. 6(а)).

По способу расположения на стержне обмотки трансформаторов подразделяются на к о н ц е н т р и ч е с к и е и ч е р е д у ю щ и е с я (рис. 7).

Концентрические обмотки (рис. 7(а)) выполняются каждая в виде цилиндра и располагаются на стержне концентрически относительно друг друга. Высота обмоток, как правило, делается равной. В высоковольтных трансформаторах ближе к стержню располагается обмотка НН, так как при этом уменьшается изоляционное расстояние между стержнем и этой обмоткой.

В чередующихся обмотках (рис. 7(б)) катушки ВН и НН чередуются вдоль стержня по высоте. Эти обмотки имеют меньшее магнитное рассеяние. Однако, при высоких напряжениях изоляция таких обмоток сложнее из-за большого количества промежутков между катушками ВН и НН.

 

 
 

 

Рис. 7. Стержень трансформатора с концентрическими (а)

и чередующимися (б) обмотками

 

Лабораторная работа № 2

 

Принцип действия и конструкция машин постоянного тока

 

На рис. 8 представлена простейшая машина постоянного тока (МПТ).

 
 

 

Рис. 8. Простейшая машина постоянного тока

 

Неподвижная часть машины, называемая и н д у к т о р о м, состоит из п о л ю с о в и круглого стального я р м а, к которому прикрепляются полюсы. Назначением индуктора является создание в машине основного магнитного потока. Индуктор, изображенный на рис. 1 простейшей машины, имеет два полюса 1.

Вращающаяся часть машины состоит из укрепленных на валу цилиндрического я к о р я 2 и к о л л е к т о р а 3. Якорь состоит из с е р д е ч н и к а, набранного из листов электротехнической стали, и о б м о т к и, укрепленной на сердечнике якоря. Обмотка якоря в показанной на рис. 8 простейшей машине имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор налегают две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью.

Основной магнитный поток в МПТ создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо снова к северному полюсу. Сердечники полюсов и ярмо также изготавливаются из ферромагнитных материалов.

На рис. 9 изображен полюс машины. Сердечники полюсов набираются из листов, выштампованных из электротехнической стали толщиной 0,5-1 мм, а иногда также из листов конструкционной стали толщиной до 2 мм. Так как магнитный поток полюсов в стационарных режимах не изменяется, то листы друг от друга обычно не изолируются.

Сердечник полюса стягивается шпильками, концы которых расклепываются. Нижняя, уширенная часть сердечника называется п о л ю с н ы м н а к о н е ч н и к о м или б а ш м а к о м. Расположенная на полюсе обмотка часто разбивается на 2-4 катушки для лучшего ее охлаждения.

 
 

Число главных полюсов всегда четное, причем северные и южные полюсы чередуются, что достигается соответствующим соединением катушек возбуждения отдельных полюсов (последовательное соединение). Мощность, затрачиваемая на возбуждение, составляет около 0,5-3 % от номинальной мощности машины.

 

 

Рис. 9. Главный полюс МПТ

 

Для улучшения условий токосъема с коллектора в машинах мощностью более 0,5 кВт между главными полюсами устанавливаются также дополнительные полюсы, которые меньше главных по своим размерам. Сердечники дополнительных полюсов обычно изготавливаются из конструкционной стали.

Как главные, так и дополнительные полюсы крепятся к ярму с помощью болтов. Ярмо в современных машинах обычно выполняется из стали (из стальных труб в машинах малой мощности, из стального листового проката, а также из стального литья). Чугун вследствие относительно малой магнитной проницаемости не применяется.

В МПТ массивное ярмо является одновременно также станиной, т.е. той частью, к которой крепятся другие неподвижные части машины и с помощью которой машина обычно крепится к фундаменту или другому основанию.

Сердечник якоря набирается из выштампованных дисков (рис. 10) электротехнической стали толщиной 0,5 мм. Диски насаживаются либо непосредственно на вал (при см), либо набираются на якорную втулку (см), которая надевается на вал. Сердечники якоря диаметром 100 см и выше составляются из штампованных сегментов электротехнической стали. Сегменты набираются на корпус якоря, который изготавливается обычно из листового стального проката и с помощью втулки соединяется с валом.

 
 

 

 


Рис. 10. Диск (а) и сегмент (б) стали якоря МПТ

 

В сердечнике якоря в зависимости от выбранной системы венти­ляции могут быть а к с и а л ь н ы е или р а д и а л ь н ы е к а н а л ы. Аксиаль­ные каналы образуются выштампованными в дисках сердечника отверстиями. Радиальные каналы создаются с помощью дистан­ционных распорок или ветрениц, посредством которых сердечник якоря подразделяется на отдельные пакеты 1 шириной 40-70 мм и каналы 2 между ними шириной около 5-10 мм (рис. 11).

В пазы на внешней поверхности якоря укладываются катушки обмотки якоря. Выступающие с каждой стороны из сер­дечника якоря (рис. 11) лобовые части обмотки 3 имеют вид ци­линдрического кольца и своими внутренними поверхностями опи­раются на обмоткодержатели 5, а по внешней поверхности крепятся проволочными бандажами 7. Обмотка соединяется с коллектором 4.

 
 

 


Рис. 11. Сердечник якоря с обмоткой МПТ

 

Величина воздушного зазора между полюсами и якорем в малых машинах менее 1 мм, а в крупных – до 1 см.

Устройство коллектора машины небольшой мощности показано на рис. 12. Он состоит из медных пластин 1 толщиной 3-15 мм, изолированных друг от друга миканитовыми прокладками толщиной около 1 мм. Пластины имеют трапецеидальное сечение и вместе с прокладками составляют кольцо, которое скрепляется с помощью нажимных фланцев 4, стянутых стяжными болтами 7. От нажимных фланцев пластины коллектора изолируются миканитовыми коллекторными манжетами 2. Собранный коллектор крепится на валу 6 с помощью шпонки 5. К каждой пластине коллектора присоединяются соединительные проводники – «петушки» 3 – от обмотки якоря.

 
 

 

 


Рис. 12. Устройство коллектора МПТ

 

Для отвода тока от вращающегося коллектора и подвода к нему тока применяется щ е т о ч н ы й а п п а р а т, который состоит из щеток, щеткодержателей, щеточных пальцев, щеточной траверсы и токособирающих шин.

Щеткодержатели укрепляются на щеточных пальцах. На каждом щеточном пальце обычно помещают несколько или целый ряд щеткодержателей со щетками, которые работают параллельно. Щеточные пальцы, число которых обычно равно числу главных полюсов, крепятся в щеточной траверсе и электрически изолируются от нее. Траверса крепится к неподвижной части машины: в машинах малой и средней мощности – к втулке подшипникового щита, а в крупных машинах – к станине. Обычно предусматривается возможность поворота траверсы для установки щеток в правильное положение. Полярности щеточных пальцев чередуются, и все пальцы одной полярности соединяются между собой сборными шинами. Шины с помощью отводов соединяются с выводными зажимами или с другими обмотками машины.

Коллектор и щеточный аппарат являются весьма ответственными узлами машины, от конструкции и качества изготовления которых в большой степени зависит бесперебойная работа машины и надежность электрического контакта между коллектором и щетками.

Рассмотрим работу машины в р е ж и м е г е н е р а т о р а [1] (рис. 13 (а)). Предположим, что якорь машины приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется электродвижущая сила (ЭДС), направление которой может быть определено по правилу правой руки. Поскольку поток полюсов предполагается неизменным, то эта ЭДС индуктируется только вследствие вращения якоря и называется ЭДС в р а щ е н и я. Величина индуктируемой в проводнике обмотки якоря ЭДС вычисляется по формуле:

, В, (1)

где: – величина магнитной индукции в воздушном зазоре между полюсом и якорем в месте расположения проводника, Тл;

– активная длина проводника, т.е. та длина, на протяжении которой он расположен в магнитном поле, м;

 
 

– линейная скорость движения проводника, м/с.

 

Рис. 13. Работа простейшей МПТ в режиме генератора (а) и двигателя (б)

 

В обоих проводниках вследствие симметрии индуктируются одинаковые ЭДС, которые по контуру витка складываются, и поэтому полная ЭДС якоря рассматриваемой машины равна:

, В. (2)

Эта ЭДС является переменной, т.к. проводники обмотки якоря проходят попеременно под северным и южным полюсами, в результате чего направления ЭДС в проводниках меняется. По форме кривая ЭДС проводника в зависимости от времени повторяет кривую распределения индукции вдоль воздушного зазора.

Частота ЭДС в двухполюсной машине равна скорости вращения якоря:

, об/мин. (3)

В общем случае, когда машина имеет пар полюсов с чередующейся полярностью, то частота ЭДС вычисляется по формуле:

, об/мин. (4)

Если обмотка якоря с помощью щеток замкнута через внешнюю цепь, то в этой цепи, а также в обмотке якоря возникает ток . В обмотке якоря этот ток будет переменным. Однако во внешней цепи направление тока будет постоянным, что объясняется действием коллектора. Действительно, при повороте якоря и коллектора на 90º С и изменении направления ЭДС в проводниках одновременно происходит также смена коллекторных пластин под щетками. Вследствие этого под верхней щеткой всегда будет находиться пластина, соединенная с проводником, расположенным под северным полюсом, а под нижней щеткой – пластина, соединенная с проводником, расположенным под южным полюсом. В результате этого полярность щеток и направление тока во внешней цепи остаются неизменными.

Таким образом, в генераторе коллектор является м е х а н и ч е с к и м в ы п р я м и т е л е м, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.

Напряжение постоянного тока на зажимах якоря генератора будет меньше на величину падения напряжения в сопротивлении обмотки якоря:

, В. (5)

Проводники обмотки якоря с током находятся в магнитном поле, поэтому на них будут действовать электромагнитные силы, вычисляемые по формуле 6, направление которых определяется по правилу левой руки:

, А. (6)

Эти силы создают механический вращающий момент , который называется э л е к т р о м а г н и т н ы м м о м е н т о м и равен:

, Н·м, (7)

где: – диаметр якоря, м.

Рассматриваемая простейшая машина может работать также д в и г а т е л е м, если к обмотке ее якоря подвести постоянный ток от внешнего источника (рис. 13 (б)). При этом на проводники обмотки якоря будут действовать электромагнитные силы и возникает электромагнитный момент . Величины и , как и для генератора, определяются равенствами (6) и (7). При достаточной величине якорь машины придет во вращение и будет развивать механическую мощность. Момент при этом является движущим и действует в направлении вращения.

Чтобы при той же полярности полюсов направления вращения генератора и двигателя были одинаковы, то направление действия , а следовательно, и тока у двигателя должны быть обратными по сравнению с генератором.

В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный ток в обмотке якоря и работает в качестве м е х а н и ч е с к о г о и н в е р т о р а тока.

Проводники обмотки якоря двигателя также вращаются в магнитном поле, поэтому в обмотке якоря двигателя тоже индуктируется ЭДС, величина которой определяется равенством (2). Направление этой ЭДС в двигателе такое же, как и в генераторе. Таким образом, в двигателе ЭДС якоря направлена против тока и приложенного к зажимам якоря напряжения . Поэтому ЭДС якоря двигателя называется п р о т и в о э л е к т р о д в и ж у щ е й с и л о й.

Приложенное к якорю двигателя напряжение уравновешивается ЭДС и падением напряжения в обмотке якоря:

, В. (8)

Из изложенного выше следует, что каждая МПТ может работать как в режиме генератора, так и в режиме двигателя. Такое свойство присуще всем типам вращающихся ЭМ и называется о б р а т и м о с т ь ю.

Для перехода МПТ из режима генератора в режим двигателя и обратно при неизменной полярности полюсов и щеток и при неизменном направлении вращения требуется только изменение направления тока в обмотке якоря. Поэтому такой переход может осуществляться весьма просто и в определенных условиях даже автоматически.

Лабораторная работа № 3

 

<== предыдущая лекция | следующая лекция ==>
Вынос оксида углерода и других продуктов неполного сгорания и их расчёт | Принцип действия и конструкция асинхронных машин
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 315; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.099 сек.