Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Второй метод Ляпунова

Исследование устойчивости нелинейных систем

Выдающийся русский математик Александр Михайлович Ляпунов в конце 19-го века разработал весьма общий метод исследования на устойчивость решений систем дифференциальных уравнений

(7.34)

,
получивший в дальнейшем название второго или прямого метода Ляпунова.

Прежде чем давать точные формулировки, кратко рассмотрим идею метода.
Предположим, что на устойчивость исследуется точка покоя где
i=1,2,… n системы (7.34). Если бы с возрастанием t точки всех траекторий приближались к началу координат или хотя бы не удалялись от него, то очевидно, рассматриваемая точка покоя была бы устойчивой.

Проверка выполнения этого условия не требует знания решений системы уравнений (7.34). Действительно, если r - расстояние от точки траектории до начала координат, то

и

(7.35)
Правая часть в (7.35) является известной функцией времени и координат процесса и, следовательно, можно исследовать ее знак. Если окажется, что , то точки на всех траекториях не удаляются от начала координат при возрастании времени и точка покоя устойчива.

Вместо обычно вычисляют для упрощения дифференцирования производную , знак которой совпадает с .

Однако точка покоя может быть устойчивой и даже асимптотически устойчивой и при немонотонном приближении к ней точек траектории с возрастанием времени. Для того, чтобы убедиться в этом достаточно взглянуть на траектории типа центра или устойчивого фокуса, рассмотренные при изучении метода фазовых портретов. Поэтому вместо функций r А.М. Ляпунов рассматривал некоторые функции V(t,x1,x2,...,xn), являющиеся в некотором смысле «обобщенными расстояниями» до начала координат. Каждая V - функция определена в некоторой области G, заданной неравенством

<L,
где L -некоторая постоянная величина.

Прямой метод Ляпунова об изучении устойчивости сводится к построению таких функций V векторной переменной X(x1,...,xn), полные производные которых по времени, вычисленные согласно (7.34), обладают некоторыми специфическими свойствами.

Всякую функцию V назовем знакопостоянной, если она, кроме нулевых значений, принимает всюду в области G значения только одного знака.

Всякую знакопостоянную функцию, принимающую нулевое значение только в начале координат, назовем знакоопределенной и учитывая ее знак- определенно положительной или определенно отрицательной.

Наряду с функциями V будем рассматривать их полные производные по времени

. (7.36)

Ляпуновым были доказаны следующие две фундаментальные теоремы:

Теорема 1. Если дифференциальные уравнения возмущенного движения таковы, что возможно найти знакоопределенную функцию V, производная (7.36) которой в силу этих уравнений была бы знакопостоянной функцией противоположного знака с V или тождественно равной нулю, то невозмущенное движение устойчиво.

Теорема 2. Если дифференциальные уравнения возмущенного движения таковы, что возможно найти знакоопределенную функцию V, производная (3) которой в силу этих уравнений была бы функцией знакоопределенной противоположного с V знака, то невозмущенное движение устойчиво асимптотически.

Функции V, удовлетворяющие условиям этих теорем, называются функциями Ляпунова.

Трудность применения прямого метода Ляпунова к решению прикладных задач связана с отсуствием широко разработанных общих приемов построения функций Ляпунова в тех или иных случаях. Наибольшее распространение для анализа устойчивости систем автоматического управления (САУ) находят функции Ляпунова в виде квадратичных форм

(7.37)

В матричной форме можно записать

,


где

.
Квадратичная форма, представленная в виде (7.37) или соответствующей ей матрицы Р является знакопостоянной- положительно определенной, если >0, отрицательно определенной, если <0, или знакоопределенной- знакоположительной, если и знакоотрицательной, если

Укажем признаки, по которым можно проверить, - какое из указанных выше свойств имеет изучаемая квадратичная форма или соответствующая ей матрица. Найдем собственные числа матрицы Р -i, решив известное уравнение det(I-P)=0, где I -единичная матрица. Если все собственные числа рассматриваемой матрицы строго больше нуля, то квадратичная форма определенно положительная, если все собственные числа строго отрицательны, то квадратичная форма определенно отрицательная. При li0 квадратичная форма знакоположительна, а при li0 -знакоотрицательна.
Сформулируем еще один признак определенной положительности квадратичной формы, известный как критерий Сильвестра.

Для того, чтобы квадратичная форма была положительно определенной, необходимо и достаточно, чтобы каждый из угловых (диагональных) миноров

Dк =,

k=1,2,…..n.
матрицы Р был положителен.

Если задача о построении функций Ляпунова для какого-либо класса систем решена, то прямой метод можно рассматривать как наиболее эффективный метод исследования устойчивости. Его особенная ценность проявляется в тех случаях, когда интересуются исследованием устойчивости в большом, т.е. при любых конечных отклонениях. Кроме того, этот метод может применятся к изучению устойчивости тех систем управления, которые содержат существенно нелинейные и неаналитические (разрывные) характеристики. Во всех этих случаях возможность применения метода первого приближения исключена.

Следует помнить, что если какая-либо задача об устойчивости в теории управления может быть решена прямым методом, то это решение не будет однозначным. Действительно, функции Ляпунова определены столь общими свойствами, что их может быть построено бесчисленное множество. Следовательно, условия устойчивости, к которым приводит прямой метод, являются условиями достаточными и их нарушение еще не будет означать неустойчивости системы. Мы уже говорили о том, что свобода выбора функций Ляпунова позволяет строить критерии устойчивости систем, в которых некоторые нелинейные элементы не могут быть точно охарактеризованы. Любой другой известный метод исследования устойчивости не дает возможности решить задачу об устойчивости в большом в этом случае. Но полученное решение, в силу указанной многозначности функций Ляпунова и отсуствия условия необходимости, может оказаться неконструктивным, т.е. таким, которое предъявляет чрезмерно высокие требования к параметрам регулятора, реализовать которые практически невозможно.

<== предыдущая лекция | следующая лекция ==>
Метод гармонической линеаризации | Критерий абсолютной устойчивости В.М.Попова
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1064; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.