КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Число е
Рассмотрим пример последовательности, для исследования сходимости которой будет использована вышеуказанная теорема (п. 2.7.) о пределе монотонной последовательности. Пусть дана последовательность Используя формулу бинома Ньютона
получим
или
или
Аналогично этому
Очевидно, что 1) 2) все члены последовательности 3) xn+1 по сравнению с хn содержит лишний положительный член.
Поэтому хn<xn+1 и Используем неравенство
Действительно,
Учитывая, что каждое выражение в круглых скобках формулы (1) строго меньше 1, и заменяя его поэтому единицей, получим, что
Суммируя n-1 член убывающей геометрической прогрессии со знаменателем
Итак, последовательность По доказанной теореме (п. 2.7.) эта последовательность имеет предел, который называют числом е. По определению
Дата добавления: 2014-01-07; Просмотров: 312; Нарушение авторских прав?; Мы поможем в написании вашей работы! |