КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение. Данную функцию можно представить в виде у = , где
Данную функцию можно представить в виде у = , где . Тогда по теореме 2 у'() = у '()×'() = ()'×()' = ×= ×.
Замечание. В теореме 2 мы рассмотрели сложную функцию, где у зависит от переменной t через одну промежуточную переменную х. Возможна и более сложная зависимость ─ с несколькими промежуточными переменными. При этом правило дифференцирования остаётся прежним.
Пример. Вычислить производную функцию у = tg2(2+1). Решение. Данную функцию можно представить в виде у = 2, = tg, = 2+1. Тогда у'() = у '()×'()×'() = (2)'×(tg)'×(2+1)' = =tg.
Мы уже отмечали, что производная f '(х) функции у = f(x) сама является функцией аргумента х. Следовательно, по отношению к ней снова можно ставить вопрос о существовании и нахождении производной.
Определение. Назовём f '(х) производной первого порядка функции у = f(x), дифференцируемой на некотором промежутке (). Производная от f '(х) называется производной второго порядка функции у = f(x) и обозначается f ''(x). Производная от f ''(x) называется производной третьего порядка, обозначается f '''(x). Таким образом определяется производная n-го порядка для любого натурального n. Производные, начиная со второй, называются производными высшего порядка и обозначаются: у'', у''', у(4), у(5),…, у(n),…. Итак, по определению
у(n) = (у(n-1))', n = 2,3,…. Пример. Вычислить производную третьего порядка функции у = .
Дата добавления: 2014-01-07; Просмотров: 450; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |