Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Несобственные интегралы 2-го рада




Эталонный интеграл 1-го рода.

Несобственные интегралы 2 рода.

Определение 1.

Интеграл вида: , где y=f(x) непрерывна (a;b], a - точка разрыва 2 рода. Называется несобственным интегралом 2 рода.

Если предел конечен, то несобственный интеграл 2 рода называется сходящимся.

Определение 2.

Если предел равен бесконечности или не существует вовсе, то несобственный интеграл 2 рода называется расходящимся.

Пусть функция y=f(x) имеет разрыв 2 рода в точке C, принадлежащей (a;b). В остальных точках промежутка непрерывна.

Определение 3.

Если оба несобственных интеграла 2 рода справа сходятся, то несобственный интеграл слева называется сходящимся.

Если хотя бы один из интегралов справа расходится, то несобственный интеграл слева называется расходящимся.

Свойства несобственных интегралов 2 рода те же, что и для несобственных интегралов 1 рода.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 535; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.