Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение. Случайная величина распределена по нормальному закону с математическим ожиданием




Пример 1.

Решение.

Пример 3.

Случайная величина распределена по нормальному закону с математическим ожиданием. Задан интервал, не включающий начало координат. При каком значения среднего квадратического отклонения вероятность попадания в достигает максимума?

Для решения задачи сделаем схематический чертеж:

 

Рис

Значение найдем, дифференцируя по вероятность попадания в и приравнивая производную к нулю. Имеем

.

.

Отсюда

,

и, следовательно,

.

Для малого интервала

.

10. Закон больших чисел

Трудно сказать о том, какие значения примет случайная величина. Все зависит от совокупности случайных обстоятельств. Когда таких случайных обстоятельств очень много, то, оказывается, существуют условия, позволяющие предвидеть ход опыта, явления, которые получили название закона больших чисел или предельных теорем.

Если существует математическое ожидание квадрата случайной величины, то имеет место неравенство:

.

Это неравенство называется вторым неравенством Чебышева.

Первое неравенство Чебышева: если существует, то для всех имеет место.

Выберем в качестве случайной величины центрированную случайную величину и применим к ней второе неравенство Чебышева:

.

Теорема Чебышева (закон больших чисел).

Если случайные величины в последовательности попарно независимы, а их дисперсии удовлетворяют условию

,

то для всех

.

Теорема Маркова (закон больших чисел в общей формулировке).

Если дисперсии произвольных случайных величин в последовательности удовлетворяют условию

,

то имеет место утверждение

.

Измеряется скорость ветра в данном пункте Земли. Случайная величина X – проекции вектора скорости ветра на фиксированное направление. Оценить вероятность события, если путем многолетних измерений установлено, что.

За возьмем 80 км/ч и, применив первое неравенство Чебышева, получим =>.

Предельные теоремы теории вероятностей

Теорема Бернулли. Относительная частота успехов в независимых испытаниях по схеме Бернулли сходятся по вероятности при к вероятности успеха в одном испытании.

Центральная предельная теорема (Ляпунова). Если случайные величины в последовательности независимы, одинаково распределены и имеют конечные математическое ожидание и дисперсию, то для любого действительного

,

где – стандартизированное среднее арифметическое n случайных величин в последовательности.

Пусть – число успехов в независимых испытаниях по схеме Бернулли. Тогда при достаточно больших значениях

,

где – табулирована и (интегральная теорема Муавра – Лапласа).

,,

– функция табулирована (локальная теорема Муавра – Лапласа).




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1324; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.