Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Предельная скорость одиночных движений




О 30 60 90 720

Методика развития (тренировка) силы мышц

Развитие силы и ее измерение

Силу мышц измеряют с помощью различных приборов (динамометры и др.). А. Беком определена «удельная сила мышцы» (табл. 14.1).

Таблица 14.1. Удельная сила различных мышц

Наименование   Сила мышцы (кг) на 1 см2 физиологического поперечника  
Икроножная с камбаловидной   6,24  
Разгибатели шеи   9,0  
Жевательная   10,0  
Двуглавая мышца плеча   11.4  
Трехглавая мышца плеча   . 16,8  

Для сравнения силы у людей разного веса и пола введено поня­тие «относительная сила» (отношение максимальной силы к весу).

Сила мышц зависит от многих факторов. При прочих равных усло­виях она пропорциональна поперечному сечению мышц (принцип Вебера). Максимально возможное ее сокращение (укорочение) при прочих равных условиях пропорционально длине мышечных воло­кон (принцип Бернулли).

В зависимости от вида спорта, спортсмены отдают предпочте­ние развитию тех мышечных групп, от которых в значительной мере зависит эффективность выполнения упражнений.

Например, у тяжелоатлетов высокий уровень развития силы мышц-разгибателей. У квалифицированных тяжелоатлетов отноше­ние силы мышц-разгибателей к силе мышц-сгибателей выражается следующими величинами: для плеча (локтевой сустав) — 1,6: 1, туловища (тазобедренный и поясничный суставы) — 4,3:1, голе­ни (голеностопный сустав) — 5,4: 1, бедра (коленный сустав) — 4,3: 1. Именно в этом заключается своеобразие топографии и гар­монии развития атлетов.

В тяжелой атлетике силу мышц измеряют в позах, которые спортсмены принимают при подъеме штанги.

Наиболее значительные усилия атлеты затрачивают в фазе под­рыва, когда углы в коленных суставах равны 130—140°, а в тазо­бедренных — около 60—70° и гриф штанги находится у середины бедра. В данном положении спортсмены способны развивать уси­лие до 500 кг и более (А.Н. Воробьев, 1988).

В спортивной физиологии и педагогике широко распространен термин «взрывная сила», характеризующий предельную быстроту развития напряжения мышц.

Взрывную силу мышц рассчитывают по следующей формуле: I=Fmax/t

где I — скоростно-силовой индекс; Fmax максимальное значе­ние силы мышцы в данном движении; t — время достижения мак­симальной силы мышц.

Косвенным показателем взрывной силы может служить высота и длина прыжка с места при отталкивании двумя ногами.

Сила мышц снижается после продолжительной интенсивной мышечной работы, на нее влияет характер выполняемой работы, уровень тренированности мышц.

Развитие силы мышц достигается при тренировке с применени­ем различных режимов работы мышц.

До 50-х годов для развития силы мышц в методике тренировок рассматривались частота занятий, интервалы отдыха, количество упражнений со штангой и их последовательность.

Современная спортивная методика тренировок наряду с преодо­левающим режимом мышечной работы предусматривает удержи­вающий, уступающий, а также смешанный режим.

Миометрический метод (работа в преодолевающем режиме двигательной деятельности) представляет собой работу мышц в миометрическом режиме, т. е. их напряжение в режиме укоро­чения.

Изометрический метод получил широкое распространение для развития силы. Для увеличения силы мышц и их массы Т. Хеттингел (1966) считает оптимальной величину усилия, равную 40— 50% от максимума. При усилии, равном 20—30% от максимума, сила мышц не изменяется.

В практике спорта применяется напряжение 55—100% от мак­симума в течение 5—10 с. С увеличением напряжения уменьша­ется время удержания позы.

Необходимо учитывать индивидуальные особенности штанги­ста, а именно: количество подходов, времени, в течение которого упражняемая мышца должна напрягаться; величину напряжения в тренировке; количество тренировок в неделю для развития силы.

В спорте для развития силы часто используют метод комбинированного режима. Полученные данные говорят о высокой эффективности тренировки при сочетании уступающего, удерживающего (изометрического) и преодолевающего режимов мышечной деятельности. В процентном отношении тренировки выглядели следующим образом: 75% — преодолевающая работа, 15% — уступающая (и 10% — удерживающая (А.Н. Воробьев, 1988). Построение тренировок выглядит следующим образом: 1) упражнения в уступающем режиме работы мышц должны применяться с весом 80— 120% от максимального результата в аналогичных упражнениях в преодолевающем режиме; 2) при работе с весом 80—100% от максимума упражнения следует выполнять 1—2 раза по 6—8 с, а с весом 100—120% — 1 раз в подходе; длительность опускания снаряда — 4—6 с; 3) интер­валы отдыха между подходами должны быть 3—4 мин.

Упражнения в уступающем и удерживающем режимах целесо­образно выполнять в конце тренировки.

Для развития силы мышц используется и статико-динамический метод. Подняв штангу до уровня колен, штангист удерживает ее в этом положении в течение 5—6 с, затем продолжают тягу; точно так же выполняются и приседания.

Все виды приседаний связаны с уступающей работой. На при­седания тяжелоатлеты отводят около 10—25% всей тренировоч­ной нагрузки. Обычно уступающую работу высококвалифициро­ванные тяжелоатлеты выполняют с весом 110—120% от лучшего результата при преодолевающей работе, но не чаще одного раза в 7—10 дней.

Помимо описанных, существуют нетрадиционные методы раз­вития силы. А.Н. Воробьевым разработан метод принудительного растяжения мышц. В регуляции напряжения мышц следует при­держиваться такого правила : чем интенсивнее растяжение, тем меньше должно быть время воздействия.При очень сильных рас­тяжениях достаточно 30 с. В системе тренировок каждый атлет должен применять упражнения с принудительным растяжением мышц; они наиболее целесообразны после серии подходов в каком-либо упражнении. Регулярное включение в тренировки принуди­тельного растяжения «рабочих» мышц ведет к большому уве­личению силы мышц.

Таким образом, принудительное растяжение мышц может слу­жить одним из эффективных методов повышения работоспособ­ности.

«Безнагрузочный» метод развития силы мышц был разработан А.Н. Анохиным (1909). Он заключается в «волевом» согласованном напряжении мышц-антагонистов без внешней нагрузки. Рекомен­дуется пятнадцать простых упражнений, при которых «волевым» напряжением развивается сила мышц.

«Безнагрузочный» метод развития силы мышц можно применять во время утренней зарядки.

6.Влияние различных факторов на проявление силы мышц. Си­ла сокращения мышц зависит от многих причин, в частности, от анатомического строения мышц (перистые, веретенообразные и мышцы с параллельными продольными волокнами); возбудимо­сти ЦНС; гуморальных механизмов; оксигенации тканей и т. д.

При динамической работе максимальной интенсивности орга­низм обеспечивается кислородом всего лишь на 10%.

Мышечная работа существенно изменяет гормональный фон. Так, после средней и тяжелой тренировки содержание норадреналина в крови может увеличиться в два раза, значительно возрас­тает содержание гормона роста. Уровень кортизола повышается только после тяжелых тренировок, тогда как содержание инсули­на уменьшается.

На работоспособность существенно влияют глюкокортикоиды и андрогены.

Взаимосвязь силы мышц и ее массы. Известно, что чем боль­ше мышечная масса, тем больше сила. Эту зависимость можно вы­разить формулой: F = а • Р • 2/3, где F — сила; а — некоторая постоянная величина, характеризующая физическую подготовлен­ность атлета; Р — вес атлета.

У ведущих тяжелоатлетов мышечная масса составляет 55— 57% веса тела (А.Н. Воробьев, Э.И. Воробьева, 1975—1979).

Значение положения тела при выполнении силовых упраж­нений. Сила, которую может проявить человек, зависит от положе­ния его тела. Для каждого движения существуют такие положения тела, в которых проявляются наибольшие и наименьшие величины силы (рис. 14.8). Например, во время сгибания в локтевом суставе максимум силы достигается при угле 90°; при разгибании в лок­тевом и коленном суставах оптимальный угол около 120°; при из­мерении становой силы максимальные показатели проявляются, когда угол около 155°, и т. п.

Возникает вопрос: какие положения надо выбирать при выпол­нении силовых упражнений? Нередко используют положения, когда собственная сила активных мышц максимальна,

О 30 60 90 120

Рис. 14.8. Зависимость силовых показателей от суставных углов (по Уильямсу и Штуцману, 1959).

Сплошная линия — данные мужчин; пунктирная — данные женщин.

По горизонтали — суставной угол; по вертикали — сила (в фунтах)

т. е. когда мышцы напрягаются в растянутом состоянии. Вследствие усиле­ния потока проприоцептивных импульсов такое положение тела вызовет увеличение рефлекторной стимуляции и тем усилит воз­действие упражнений.

Энергетика мышцы. Энергия мышечного сокращения. Во время активации мышцы повышение внутриклеточной концентра­ции Са ведет к сокращению и к усиленному расщеплению АТФ; при этом интенсивность метаболизма мышцы возрастает в 100— 1000 раз. Согласно первому закону термодинамики (закону со­хранения энергии), химическая энергия, высвобождаемая в мыш­це, должна быть равна сумме механической энергии (мышечной работы) и теплообразования.

Даже изометрическое сокращение сопровождается непрерыв­ной циклической активностью поперечных миозиновых мостиков и «внутренняя» работа, связанная с расщеплением АТФ и тепло­образованием при этом значительна. Недаром даже такая «пас­сивная деятельность», как стойка «смирно», утомительна. Когда мышца поднимает груз, совершая «внешнюю» работу, расщепля­ется дополнительное количество АТФ. При этом усиление интенсив­ности метаболизма пропорционально выполняемой работе (эффект Фенна).

Обычно первоисточником энергии для мышечного сокращения служит гликоген или жирные кислоты. В процессе расщепления этих субстратов вырабатывается АТФ, гидролиз которого достав­ляет энергию непосредственно для самого сокращения: АТФ —» АДФ + Фн + энергия.

Мышцы, сокращаясь, превращают весьма значительную часть (1/4—1/3) химической энергии в механическую работу, выде­ляя при этом теплоту; это — один из главных источников образо­вания ее в организме.

Гидролиз одного моля АТФ дает примерно 48 кДж энергии. Од­нако лишь около 40—50% ее превращается в механическую энер­гию работы, а остальные 50—60% рассеиваются в виде тепла при запуске (начальная теплота) и во время сокращения мышцы, тем­пература которой при этом несколько повышается. Таким образом, КПД элементарного преобразования АТФ в миофибриллах со­ставляет примерно 40—50%. Однако в естественных условиях механический КПД мышц обычно гораздо ниже — около 20—30%, так как во время сокращения и после него процессы, требующие затрат энергии, идут и вне миофибрилл. Эти процессы, например, работа ионных насосов и окислительная регенерация АТФ, сопро­вождаются значительным теплообразованием (теплота восстанов­ления). Чем больше совершенная работа, тем больше образуется тепла и расходуется энергоресурсов (углеводов, жиров) и кисло­рода.

Такая закономерность, кстати, объясняет усталость, усиленное потоотделение и одышку при подъеме в гору, но не при спуске.

Мышцы способны производить механическую работу, обеспечи­вая перемещение человека, движение воздуха в дыхательных пу­тях, движение крови и многие другие жизненно важные процессы.

Коэффициент полезного действия (КПД) мышцы. Когда мышцы совершают работу, в них освобождается химическая энер­гия, накопленная в процессе метаболизма; она частично превра­щается в механическую работу, а частично теряется в виде тепла.

S. Dickinson (1929) измеряла КПД превращения химической энергии в механическую работу у спортсмена, работающего на так называемом велоэргометре, где человек приводит во вращение ко­лесо, нажимая ногами на педали. Через колесо переброшен матер­чатый привод, который действует как тормоз. К одному концу этого привода подвешен груз, а другой конец прикреплен к пружинным весам (рис. 14.9). Если груз имеет массу m, то он будет тянуть привод с силой mg. На другой конец привода действует меньшая сила F, измеряемая пружинными весами. Таким образом, сила тре­ния тормоза, приложенная к ободу колеса, равна mgF. Если коле­со имеет радиус г и совершает п оборотов в единицу времени, то скорость движения его обода составляет 2 pr n. Мощность, необхо­димая для того, чтобы вращать колесо с такой скоростью, преодо­левая силу трения, равна 2pr n(mg — F), и ее можно вычислить. Хотя описанная работа может показаться бессмысленной, эта мощ­ность служит мерой «полезной работы» в том смысле, в каком это понятие входит в определение КПД.

С помощью велоэргометра можно измерять КПД мускулатуры ног, а также и максимальную мощность, которую она способна развить.

D.A. Раггу (1949) показал, что мощность мускулатуры ног дос­тигает 40 Вт на 1 кг мышечной ткани. На таком уровне она может оставаться лишь короткое время, так как мышцы не могут получать кислород с необходимой для этого скоростью.

Затрату химической энергии в единицу времени можно изме­рить косвенным путем, собирая выдыхаемый воздух испытуемого и исследуя его. На каждый мл Оу использованного в процессе ды­хания, освобождается около 5 кал химической энергии. Более точно эту величину можно определить, если известно относитель­ное содержание жиров и углеводов в пище, но скорость освобож­дения химической энергии можно вычислить вполне точно, если определять содержание в выдыхаемом воздухе не только кислоро­да, но и углекислоты.

S. Dickinson измеряла у испытуемых использование химической энергии в покое и во время работы на велоэргометре. Разность меж­ду этими величинами в каждом случае показывала, какое количество химической энергии расходовалось в единицу времени на создание механической мощности, необходимой для вращения колеса. Она на­шла, что КПД варьирует в зависимости от скорости вращения педа­лей (рис. 14.10) и достигает максимальной величины — 22% — при нажимании ногой на педаль через каждые 0,9 с (т. е. при одном обо­роте педалей за 1,8 с).

Рис. 14.10. Превращение химической энергии в механическую работу у человека, приводящего в движение велоэргометр, на протяжении полуоборота педалей (S. Dickinson, 1929 ).

Прерывистая линия — теоретическая кривая (в тексте не упоминается)

7.Физическая работоспособность.

Сокращаясь и напрягаясь мышца производит механическую работу, которая в простейшем случае (варианте) может быть определена по формуле Л = РН, где Л — механическая работа (кгм), Р — вес груза (кг), Н — высота подъема груза (м).

Таким образом, работа мышц измеряется произведением ве­личины веса поднятого груза на величину укорочения мышцы. Из формулы легко вывести так называемое правило средних нагрузок, согласно которому максимальная работа может быть произведена при средних нагрузках. Действительно, если Р = 0, т. е. мышца сокращается без нагрузки, то и Л = 0. При Н = 0, что можно на­блюдать, когда мышца не способна поднять слишком тяжелый груз, работа также будет равна 0.

Движения человека весьма разнообразны. В процессе этих движе­ний мышцы, сокращаясь, совершают работу, которая сопровождается как их укорочением, так и их изометрическим напряжением. В этой связи различают динамическую и статическую работу мышц. Дина­мическая работа связана с мышечной работой, в процессе которой сокращения мышц всегда сочетаются с их укорочением. Статиче­ская работа связана с напряжением мышц без их укорочения. В обычных условиях мышцы человека никогда не совершают дина­мическую или статическую работу в строго изолированном виде. Ра­бота мышц всегда является смешанной. Тем не менее, в локомоциях может преобладать либо динамический, либо статический характер мышечной работы. Поэтому характеризуя мышечную деятельность в целом, говорят о ее статическом или динамическом характере. Бег, игры, плавание являются динамической работой, а удерживание на весу штанги, гири или гантелей — статическая работа.

Величина механической работы, совершаемой сокращающейся мышцей выражается в килограммометрах (кг/м), как произведе­ние веса груза, поднимаемого мускулом, на высоту поднятия. Сила, проявляемая мышцей, зависит от числа составляющих ее мускуль­ных волокон.

Длина мышечного брюшка обусловливает высоту поднятия гру­за; в среднем, мускулы при полном сокращении укорачиваются приблизительно на половину своей длины (длина сухожилия, разу­меется, не изменяется — оно только передает движение на опре­деленный пункт).

Найдено, что наибольший груз, который в состоянии удержи­вать мускул с поперечником в 1 см2, в среднем равняется 10 кг —так называемая абсолютная мышечная сила. Зная это, не трудно определить силу той или другой мышцы1.

Конечно, вычисленная таким путем величина лишь в большей или меньшей степени приближается к истинной, так как не у всех людей и даже не у всех мускулов одного и того же субъекта мы­шечная сила одинакова.

8.Развитие быстроты

Быстрота -способность к выполнению двигательных действий с минимальными затратами времени. Проявлениями этого двигательного качества являются:




Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 678; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.034 сек.