Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Математичне сподівання дискретної випадкової величини і його властивості




Тема: Математичне сподівання дискретної випадкової величини і його властивості. Дисперсія дискретної випадкової величини, властивості. Середнє квадратичне відхилення

Лекція № 7-8

 

Питання лекції:

1. Математичне сподівання дискретної випадкової величини і його властивості.

2. Дисперсія дискретної випадкової величини, властивості.

3. Середнє квадратичне відхилення.

 

 

Вичерпною характеристикою дискретної випадкової величини є її закон розподілу. Але він на практиці не завжди буває відомим. Іноді буває відомим тільки деяке середнє значення біля якого ґрунтуються можливі значення випадкової величини.

Нехай – величина, яка приймає значення разів, разів,…, разів і , тоді середнє зважене цієї величини визначається за формулою

.

Нехай тепер – дискретна випадкова величина, для якої закон розподілу задано таблицею

Середнє значення випадкової величини тепер буде середнім очікуваним значенням, яке називається математичним сподіванням. Математичне сподівання позначається так

. (1)

Отже, математичне сподівання випадкової дискретної величини дорівнює сумі добутків можливих значень випадкової величини і ймовірностей цих значень.

Таким чином, математичне сподівання є узагальненням середньої величини.

Математичне сподівання не є випадковою величиною. Якщо приймає скінчене число можливих значень, то .

Математичне сподівання числа появ події в однім іспиті дорівнює ймовірності цієї події.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1315; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.