КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Необходимое условие экстремума
Условия возрастания и убывания функции. Экстремумы функции, необходимое условие. Достаточные условия. Отыскание наибольшего и наименьшего значений функции, дифференцируемой на отрезке. Лекция 22. В предыдущих лекциях использовались известные из курса элементарной математики понятия возрастающей и убывающей функций. Определим их еще раз. Определение 22.1. Функция y = f(x) называется возрастающей (убывающей) на [ ab ], если таких, что x1 < x2, f(x1) < f(x2) (f(x1) > f(x2)). Теорема 22.1. Если функция f(x), дифференцируемая на [ ab ], возрастает на этом отрезке, то на [ ab ]. Если f(x) непрерывна на [ ab ] и дифференцируема на (ab), причем для a < x < b, то эта функция возрастает на отрезке [ ab ]. Доказательство. 1. Пусть f(x) возрастает на [ ab ]. Тогда при то есть Если же поэтому Следовательно, в обоих случаях Значит, что и требовалось доказать.
Но по условию поэтому f(x2) > f(x1), следовательно, f(x) – возрастающая функция. Замечание 1. Аналогичную теорему можно доказать и для убывающей функции: Если f(x) убывает на [ ab ], то на [ ab ]. Если на (ab), то f(x) убывает на [ ab ]. Замечание 2. Геометрический смысл доказанной теоремы: если функция возрастает на отрезке [ ab ], то касательная к ее графику во всех точках на этом отрезке образует с осью Ох острый угол (или горизонтальна). Если же функция убывает на рассматриваемом отрезке, то касательная к графику этой функции образует с осью Ох тупой угол (или в некоторых точках параллельна оси Ох).
В лекции 19 было дано определение максимума и минимума функции. Теорема 22.2 (необходимое условие экстремума). Пусть функция f(x) задана в некоторой окрестности точки х0. Если х0 является точкой экстремума функции, то или не существует. Доказательство. Действительно, производная в точке х0 либо существует, либо нет. Если она существует, то по теореме Ферма она равна нулю. Примеры.
Замечание. Отметим еще раз, что теорема 22.2 дает необходимое, но не достаточное условие экстремума, то есть не во всех точках, в которых f ′(x) = 0, функция достигает экстремума. Пример. У функции y = x ³ y ′ = 3 x 2 = 0 при х = 0, однако функция монотонно возрастает во всей области определения. Определение 22.2. Если функция определена в некоторой окрестности точки х0 и ее производная в этой точке равна нулю или не существует, точка х0 называется критической точкой функции. Теорема 22.1 означает, что все точки экстремума находятся в множестве критических точек функции.
Дата добавления: 2014-01-11; Просмотров: 397; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |