Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение. 2. Правило Лопиталя применяется только для раскрытия неопределенностей




.

.

2. Правило Лопиталя применяется только для раскрытия неопределенностей.

Пример. – здесь нет неопределенности, правило Лопиталя не применимо; в точке функция непрерывная и предел ее при равен значению функции в предельной точке.

3. При применении правила Лопиталя дифференцируется
числитель и знаменатель дроби отдельно.

4. Иногда правило Лопиталя применяется несколько раз.

Пример. Вычислить .

Решение. Значение предела

позволяет сравнить бесконечно большие при функции: показательная функция – бесконечно большая функция большего порядка по сравнению со степенной функцией – бесконечно большой при .

5. Правило Лопиталя не является универсальным,
оно применимо лишь тогда, когда существует предел отношения производных .

Пример. Значение предела получить по правилу Лопиталя нельзя, поскольку – не существует (поведение при неопределенное). Можн опровести счет, например, так: , применяя теорему о пределе произведения бесконечно малой функции на
ограниченную, в нашем случае, при , .




Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 346; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.