Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные равносильности булевых формул




Равносильные преобразования формул

В отличие от табличного задания представление функции формулой не единственно. Например, две различные формулы

Ø x 1x 2 и Ø(x 1& x 2)

реализуют одну функцию – штрих Шеффера.

Две формулы, реализующие одну и ту же функцию, называются равносильными.

Равносильность формул A и B будем обозначать следующтм образом: A º B.

Для того, чтобы установить равносильность формул, можно составить таблицы значений функции для каждой формулы и сравнить их. Для равносильных формул эти таблицы совпадают. Другой способ установления равносильности формул заключается в использовании некоторых установленных равносильностей булевых формул.

 

Для любых формул A, B, C справедливы следующие равносильности:

1. Коммутативность.

а) A & B º B & A (для конъюнкции);

б) A V B º B V A (для дизъюнкции).

2. Ассоциативность.

а) A &(B & C) º (A & C)& C (для конъюнкции);

б) A V(B V C) º (A V B)V C (для дизъюнкции).

3. Дистрибутивность.

а) A &(B V C) º A & B V A & C (для конъюнкции относительно дизъюнкции);

б) A V(B & C) º (A V B)&(A V C) (для дизъюнкции относительно конъюнкции).

4. Закон де Моргана.

а) Ø(A & B) ºØ AB (отрицание конъюнкции есть дизъюнкция отрицаний);

б) Ø(A V B) º Ø AB (отрицание дизъюнкции есть конъюнкция отрицаний).

5. Идемпотентность.

а) A & A º A (для конъюнкции);

б) A V A º A (для дизъюнкции).

6. Поглощение.

а) A &(A V B) º A (1– ый закон поглощения);

б) A V A & B º A (2– ой закон поглощения).

7. Расщепление (склеивание).

а) A & B V A &(Ø B) º A (1–ый закон расщепления);

б) (A V B) & (AB) º A (2–ой закон расщепления).

8. Двойное отрицание.

Ø(Ø A) º A.

9. Свойства констант.

а) A &1 º A; б) A &0 º 0; в) A V1 º 1; г) A V0 º A; д) Ø0 º 1; е) Ø1 º 0.

10. Закон противоречия.

AA º 0.

11. Закон “исключенного третьего”.

AA º 1.

Каждая из перечисленных равносильностей может быть доказана с помощью таблиц значений функций, составленных для выражений, стоящих слева и справа от символа “º”. Докажем, например, равносильность 4а. Для этого составим таблицу 4.5.

 

Таблица 4.5

A B A & B Ø(A & B) Ø A Ø B Ø AB
             

 

Из таблицы 4.5 видно, что Ø(A & B) º Ø AB, что и требовалось доказать.

Следующие важные равносильности показывают, что все логические операции могут быть выражены через операции конъюнкции, дизъюнкции и отрицания:

12. A É B ºØ A V B º Ø(AB).

13. A ~ B º (A É B)&(B É A) º (A & B) V (Ø AB) º (АVØ B)&(Ø A V B).

14. A ÅB º (AB) V (Ø A & B).

15. A ¯ B º Ø(A V B) º Ø AB.

16. A ï B º Ø(A & B) º Ø AB.

Используя равносильности 3а и 3б и метод математической индукции, нетрудно получить также следующие равносильности (обобщенные законы дистрибутивности):

17. (A 1V A 2V...V An)&(B 1V B 2V...V Bm) º

A 1& B 1V A 1& B 2V...V A 1& Bm V...V An & B 1V An & B 2V...V An & Bm.

18. (A 1& A 2&...& An)V(B 1& B 2&...& Bm) º

(A 1V B 1)&(A 1V B 2)&...&(A 1V Bm)&...&(An V B 1)&(An V B 2)&...&(An V Bm).

Используя равносильности 4а и 4б и метод математической индукции, можно получить также следующие равносильности (обобщенные законы де Моргана):

19. Ø(A 1& A 2&...& An) º Ø A 1A 2V...VØ An.

20. Ø(A 1V A 2V...V An) ºØ A 1A 2&...&Ø An

В равносильностях 1 – 20 в качестве A, B, Ai, Bi могут быть подставлены любые формулы и, в частности, переменные. Приведем правило, с помощью которого можно переходить от одних равносильностей к другим.




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 1125; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.