Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Взаимокорреляционная функция двух сигналов (ВКФ)




Связь между АКФ и его энергетическим спектром

Автокорреляционная (автоковариационная) функция

Корреляционные характеристики сигналов

 

Выражение

называется корреляционной функцией сигнала (правильнее, автоковариационной) АКФ S(t).

Свойства АКФ:

1) (очевидно),

2) (замена переменных),

3) .

 

По определению АКФ определяется выражением

Используя формулу Рэлея, получим

Используя теорему о сдвиге,

подставим в :

т. е. есть обратное преобразование Фурье от . Следовательно, есть прямое преобразование Фурье от :

так как , то - действительная положительная функция, четная

, где

 

Это способ определения спектральной плотности энергии:

.

 

Здесь была сделана замена переменных

.

Эта функция описывает похожесть или различие сигналов и их взаимное расположение на временной оси.

Пример

,

 

,




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 1135; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.