КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Питання 23
Хвильове рівняння [ред. • ред. код] Докладніше: Хвильове рівняння та Формула д'Аламбера Рівняння (1), що описує розповсюдження збурень в струні, є частковим випадком загального рівняння в частинних похідних, яке називається хвильовим рівнянням. Для збурень в тривимірному середовищі хвильове рівняння в декартових координатах записується у вигляді:
Фізичний зміст введеної функції може бути різним залежно від фізичних властивостей середовища. Це може бути потенціал швидкостей точок середовища або збурення тиску. Рівняння такого типу належать до рівнянь гіперболічного типу і всебічно вивчаються математичною фізикою [4]. На першому малюнку показані поверхневі гравітаційні хвилі на воді. Характер руху в таких хвилях можна описати з допомогою потенціалу швидкостей . Однак, для такого типу збурень стисливістьводи виявляється несуттєвою [5]. За такої умови загальне хвильове рівняння зводиться до рівнянням Лапласа (права частина в (3) покладається рівною нулю).
Тут і довільні двічі диференційовні функції від вказаних специфічних аргументів. Розв'язок д'Аламбера вказує на принципову особливість хвильового рівняння - сума будь-яких двох розв'язків є також розв'язком рівняння. Це частинній випадок принципу суперпозиції, що має місце для всіх лінійних задач математичної фізики. Для певної конкретної форми функції зміна її в часі показана на рисунку. Видно, що ця функція описує розповсюдження збурення в струні в додатному напрямку осі . Другий доданок в рівнянні (4), очевидно, описує збурення, що розповсюджується в від'ємному напрямку осі . Таким чином, у загальному випадку будь які збурення в струні являють собою суму (суперпозицію) двох збурень, що розповсюджуються в протилежних напрямках. Конкретна форма збурень визначається початковими умовами. До визначення фазової швидкості збурень в струні На рисунку представлено зображення відрізку струни в два різні моменти часу. Видно, що збурення пересувається вправо без зміни форми зі швидкістю і саме цією швидкістю визначається відстань між точками, що перебувають в однаковій фазі відхилення від положення рівноваги. Саме цьому ця швидкість називається фазовою швидкістю хвилі. Графічна ілюстрація до визначення поняття фазової швидкості дозволяє звернути увагу на цікаву особливість хвильового руху в нескінченній струні. Як видно, точки струни, виведені з положення рівноваги зсувом у додатному напрямку вертикальної вісі, ніколи не перейдуть через положення рівноваги.
Дата добавления: 2014-11-07; Просмотров: 1241; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |