КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Приступим к решению типового примера
Даны векторы (1; 2; 3), (-1; 0; 3), (2; 1; -1) и (3; 2; 2) в некотором базисе. Показать, что векторы, и образуют базис и найти координаты вектора в этом базисе. Решение. Векторы образуют базис, если они линейно независимы, другими словами, если уравнения, входящие в систему: – линейно независимы. Тогда . (1) Это условие выполняется, если определитель матрицы системы отличен от нуля.
В самом деле,. Запишем уравнение (1) в виде системы. Для решения этой системы воспользуемся методом Крамера.
D1 = ; D2 =
D3 =
Итак, координаты вектора в базисе,,: =(-1/4, 7/4, 5/2). Ответ: =(-1/4, 7/4, 5/2).
Задача 3. Для решения задачи 3 к уже имеющемуся материалу, добавим следующие теоретические моменты.
Уравнение поверхности в пространстве. Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности. I. Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению: Ax + By + Cz + D = 0, где А, В, С – координаты вектора -вектор нормали к плоскости. Возможны следующие частные случаи: А = 0 – плоскость параллельна оси Ох В = 0 – плоскость параллельна оси Оу С = 0 – плоскость параллельна оси Оz D = 0 – плоскость проходит через начало координат А = В = 0 – плоскость параллельна плоскости хОу А = С = 0 – плоскость параллельна плоскости хОz В = С = 0 – плоскость параллельна плоскости yOz А = D = 0 – плоскость проходит через ось Ох В = D = 0 – плоскость проходит через ось Оу С = D = 0 – плоскость проходит через ось Oz А = В = D = 0 – плоскость совпадает с плоскостью хОу А = С = D = 0 – плоскость совпадает с плоскостью xOz В = С = D = 0 – плоскость совпадает с плоскостью yOz
II. Пусть даны точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в декартовой системе координат. Уравнение плоскости, проходящей через три точки: . III. Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и вектор. Уравнение плоскости, проходящей через данные точки М1 и М2, параллельно вектору.
IV. Пусть заданы два вектора и, коллинеарные плоскости, точка М1(x1, y1, z1), принадлежащая плоскости. Тогда уравнение плоскости:
V. Уравнение плоскости проходящей через точку М0(х0, у0, z0), перпендикулярно вектору нормали (A, B, C) имеет вид: A(x – x0) + B(y – y0) + C(z – z0) =0. VI. Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на (-D), получим уравнение плоскости в отрезках: , где. Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z. VII. Уравнение плоскости в векторной форме. где - радиус- вектор текущей точки М(х, у, z), - единичный вектор, имеющий направление, перпендикуляра, опущенного на плоскость из начала координат. a, b и g - углы, образованные этим вектором с осями х, у, z. p – длина этого перпендикуляра. В координатах это уравнение имеет вид: xcosa + ycosb + zcosg - p = 0. Расстояние от точки до плоскости. Расстояние от произвольной точки М0(х0, у0, z0) до плоскости Ах+Ву+Сz+D=0 равно:
Аналитическая геометрия. Уравнение линии на плоскости. Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат. Определение. Уравнением линии называется соотношение y = f(x) между координатами точек, составляющих эту линию. Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t. Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время. Уравнение прямой на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка Ах + Ву + С = 0, причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой. В зависимости от значений постоянных А,В и С возможны следующие частные случаи: - C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат - А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох - В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу - В = С = 0, А ¹ 0 – прямая совпадает с осью Оу - А = С = 0, В ¹ 0 – прямая совпадает с осью Ох Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий. Уравнение прямой по точке и вектору нормали. Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой, заданной уравнением Ах + Ву + С = 0. Поэтому уравнение прямой, проходящей через точку M0(x0, y0, z0) и перпендикулярно вектору, имеет вид . Уравнение прямой, проходящей через две точки. Пусть в пространстве заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда уравнение прямой, проходящей через эти точки:
Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На плоскости записанное выше уравнение прямой упрощается:
если х1 ¹ х2 и х = х1, еслих1 = х2. Дробь = k называется угловым коэффициентом прямой. Уравнение прямой по точке и угловому коэффициенту. Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:
и обозначить, то полученное уравнение называется уравнением прямой с угловым коэффициентом k. Уравнение прямой по точке и направляющему вектору. Определение. Каждый ненулевой вектор (a 1, a 2), компоненты которого удовлетворяют условию Аa1 + Вa2 = 0 называется направляющим вектором прямой Ах + Ву + С = 0. Поэтому уравнение прямой, проходящей через точку M0(x0, y0, z0) и перпендикулярно вектору, имеет вид . Уравнение прямой в отрезках. Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или , где Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу. Нормальное уравнение прямой. Если обе части уравнения Ах + Ву + С = 0 разделить на число, которое называется нормирующем множителем, то получим нормальное уравнение прямой: xcosj + ysinj - p=0 – Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0. р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох. Угол между прямыми на плоскости. Определение. Если заданы две прямые y = k1x + b1, y = k2x + b2, то острый угол между этими прямыми будет определяться как . Две прямые параллельны, если k1 = k2. Две прямые перпендикулярны, если k1 = -1/k2. Теорема. Прямые Ах + Ву + С = 0 и А1х + В1у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = lА, В1 = lВ. Если еще и С1 = lС, то прямые совпадают. Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.
Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой. Определение. Прямая, проходящая через точку М1(х1, у1) и перпендикулярная к прямой у = kx + b представляется уравнением:
Расстояние от точки до прямой. Теорема. Если задана точка М(х0, у0), то расстояние до прямой Ах + Ву + С =0 определяется как .
Аналитическая геометрия в пространстве. Уравнение линии в пространстве. Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе координат удовлетворяют уравнению:F(x, y, z) = 0. Это уравнение называется уравнением линии в пространстве. Кроме того, линия в пространстве может быть определена и иначе. Ее можно рассматривать как линию пересечения двух поверхностей, каждая из которых задана каким- либо уравнением. Пусть F(x, y, z) = 0 и Ф(x, y, z) = 0 – уравнения поверхностей, пересекающихся по линии L. Тогда пару уравнений
назовем уравнением линии в пространстве. Уравнение прямой в пространстве по точке и направляющему вектору. Возьмем произвольную точку М0(x0, y0, z0) и вектор (m, n, p), параллельный прямой. Вектор называется направляющим вектором прямой. На прямой возьмем точку M(x, y, z).
z
M1
M0
0 y
x Обозначим радиус- векторы этих точек как и, очевидно, что - =. Т.к. векторы и коллинеарны, то верно соотношение = t, где t – некоторый параметр. Итого, можно записать: = + t. Т.к. этому уравнению удовлетворяют координаты любой точки прямой, то полученное уравнение – параметрическое уравнение прямой. Это векторное уравнение может быть представлено в координатной форме:
Преобразовав эту систему и приравняв значения параметра t, получаем канонические уравнения прямой в пространстве: . Определение. Направляющими косинусами прямой называются направляющие косинусы вектора, которые могут быть вычислены по формулам: ;. Числа m, n, p называются угловыми коэффициентами прямой.
Дата добавления: 2014-10-15; Просмотров: 355; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |