Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Условия параллельности и перпендикулярности прямой и плоскости в пространстве




Условия параллельности и перпендикулярности

Условия параллельности и перпендикулярности плоскостей.

Уравнение прямой в пространстве, проходящей через две точки.

Уравнение прямой, проходящей через две точки M1(x1, y1, z1) и M2(x2, y2, z2), имеет вид

.

Общие уравнения прямой в пространстве.

Уравнение прямой может быть рассмотрено как уравнение линии пересечения двух плоскостей.

Пусть в пространстве заданы две плоскости: × + D1 = 0 и × + D2 = 0, векторы нормали имеют координаты: (A1, B1, C1), (A2, B2, C2); (x, y, z).

Тогда общие уравнения прямой в векторной форме:

 

Общие уравнения прямой в координатной форме:

 

Угол между плоскостями.

 

 

 


 

j1

j 0

 

 

Угол между двумя плоскостями в пространстве j связан с углом между нормалями к этим плоскостям j1 соотношением: j = j1 или j = 1800 - j1, т.е.

cosj = ±cosj1.

Определим угол j1. Известно, что плоскости могут быть заданы соотношениями:

, где

(A1, B1, C1), (A2, B2, C2).

Угол между плоскостями находится по формуле:

 

Выбор знака косинуса зависит от того, какой угол между плоскостями следует найти – острый, или смежный с ним тупой.

 

На основе полученной выше формулы для нахождения угла между плоскостями можно найти условия параллельности и перпендикулярности плоскостей.

Для того, чтобы плоскости были перпендикулярны необходимо и достаточно, чтобы косинус угла между плоскостями равнялся нулю. Это условие выполняется, если:

.

Плоскости параллельны, векторы нормалей коллинеарны: ïï.Это условие выполняется, если:.

Угол между прямыми в пространстве.

Пусть в пространстве заданы две прямые. Их параметрические уравнения:

l1:

l2:

 

Угол между прямыми j и угол между направляющими векторами j этих прямых связаны соотношением: j = j1 или j = 1800 - j1. Угол между направляющими векторами находится из скалярного произведения. Таким образом:

.

прямых в пространстве.

Чтобы две прямые были параллельны необходимо и достаточно, чтобы их соответствующие координаты были пропорциональны.

 

Чтобы две прямые были перпендикулярны необходимо и достаточно, чтобы косинус угла между ними равен нулю.

 

 

 

Угол между прямой и плоскостью.

Определение. Углом между прямой и плоскостью называется любой угол между прямой и ее проекцией на эту плоскость.

 

 

a

 

a

j

 

Пусть плоскость задана уравнением, а прямая -. Из геометрических соображений (см. рис.) видно, что искомый угол a = 900 - j, где a - угол между векторами и. Этот угол может быть найден по формуле:

 

 

В координатной форме:

 

Для того, чтобы прямая и плоскость были параллельны, необходимо и достаточно, чтобы вектор нормали к плоскости и направляющий вектор прямой были перпендикулярны. Для этого необходимо, чтобы их скалярное произведение было равно нулю.

 

Для того, чтобы прямая и плоскость были перпендикулярны, необходимо и достаточно, чтобы вектор нормали к плоскости и направляющий вектор прямой были коллинеарны. Это условие выполняется, если векторное произведение этих векторов было равно нулю.

 

 




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 809; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.