Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Влияние скорости охлаждения на превращение аустенита




Содержание работы

Задание для самостоятельной работы студентов

 

Вариант 1.

1. Назначьте температуру нагрева под отжиг, нормализацию и закалку для стали 35. Назовите структуры, получаемые после этих термических обработок.

2. Назначьте температуру отпуска стали У12 и укажите полученную в результате твердость. Какова структура стали после данной термической операции?

 

Вариант 2.

1. Назначьте температуру нагрева под отжиг, нормализацию и закалку для стали У12. Назовите структуры, получаемые после этих термических обработок.

2. Назначьте температуру отпуска стали 65Г и укажите полученную в результате твердость. Какова структура стали после данной термической операции?

Вариант 3.

1. Назначьте температуру нагрева под отжиг, нормализацию и закалку для стали 70. Назовите структуры, получаемые после этих термических обработок.

2. Назначьте температуру отпуска стали 35 и укажите полученную в результате твердость. Какова структура стали после данной термической операции?

4.6. Лабораторная работа № 6

Микроструктуры термически
обработанных углеродистых сталей

Цель работы: изучить влияние на структуру и свойства углеродистых сталей температуры нагрева при отжиге и закалке и температуры отпуска после закалки.

Термической обработкой, изменяя структуру, можно получить требуемые свойства конкретной детали. Распространёнными видами обработок являются закалка, отжиг и нормализация. Любой вид термообработки предусматривает нагрев, выдержку при температуре нагрева и охлаждение. Нагрев выполняется выше линии А3 на 30–50 °С для доэвтектоидных сталей и выше линии А1 или Аст (при нормализации) на 30–50 °С для заэвтектоидных сталей (см. рис. 4.5.1б).

При нагреве и выдержке выше А3 или Аст исходная структура сталей превращается в однородный аустенит. Охлаждение стали выполняется в различных технологических средах, которые и определяют вид обработки: при закалке – в воде, масле, отжиге – вместе с печью, при нормализации – на спокойном воздухе. Каждая среда обеспечивает определенную скорость охлаждения.

В зависимости от скорости охлаждения превращение аустенита может быть диффузионным и бездиффузионным. Критерием превращения является критическая скорость закалки VКР – наименьшая скорость охлаждения, при которой подавляется диффузия атомов углерода.

При скоростях охлаждения V < VКР протекает диффузионный распад аустенита в феррит и цементит. В процессе превращения перестраивается кристаллическая решетка железа и происходит перераспределение углерода между фазами.

Такое превращение имеет место при отжиге, нормализации и менее распространённом виде термической обработки – закалке в масло. Ферритоцементитные смеси, полученные этими обработками, характеризуются «межпластинчатым» расстоянием h – суммарной толщиной одной пластинки феррита и одной пластинки цементита (рис. 4.6.1а−в).

а) Перлит пластинчатый – грубодисперсная ферритоцементитная смесь пластинчатой формы;

б) Сорбит закалки – дисперсная ферритоцементитная смесь пластин­чатой формы.

в) Троостит закалки – весьма дисперсная ферритоцементитная смесь пластинчатой формы.

 

Рис. 4.6.1. Структуры и схемы структур эвтектоидной стали:

а – перлит пластинчатый; б – сорбит закалки; в – троостит закалки

 

Ферритоцементитные смеси обеспечивают относительно невысокую твёрдость, возрастающую с уменьшением межпластинчатого расстояния: перлит пластинчатый – НRС 10, сорбит закалки – НRС 30, троостит закалки – НRС 40.

При скоростях охлаждения V > VКР, например, при закалке в воде протекает бездиффузионное превращение аустенита в мартенсит, т. е. кристаллическая решетка γ -Fe перестраивается α -Fe без выделения углерода из твёрдого раствора. В равновесном состоянии α -Fe растворяется всего лишь 0,006 % углерода, а в любой стали его значительно больше, отсюда следует, что мартенсит – пересыщенный раствор углерода α -Fe. Пресыщенность решетки железа углеродом создаёт внутренние напряжения, что приводит к существенному упрочнению стали. Но при этом сталь становится менее вязкой.

Рис. 4.6.2. Структура мартенсита, х 1000

 

Мартенсит закалённой стали состоит из кристаллов игольчатой формы и характеризуется структурным параметром – длиной игл L (рис. 4.6.2). Твердость этой структуры зависит от содержания углерода (см. рис. 4.5.3)




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 375; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.