КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Позиционные звенья
Типовые звенья линейных систем и их динамические характеристики Типовым элементарным динамическим звеном называется звено, динамика которого описывается диффернциальным уравнением не выше второго порядка. Типовые звенья классифицируются в зависимости от вида дифференциального уравнения на позиционные, интегрирующие, дифференцирующие, запаздывания. Позиционными называются звенья в левой части дифференциального уравнения которых выходная величина и её производные, а в правой – входная величина. 1) Усилительное звено: уравнение звена имеет вид у(t)=kx(t) (1) передаточная функция звена: W(p)=y(p)/x(p)=k; переходная функция: h(t)=L-1{W(p)/p}=L-1{k/p}=k∙1(t). Весовая функция представляет собой импульс, площадь которого равна к, т.е. при x(t)=δ(t); y(t)=ω(t)=k∙ δ(t)
Получим частотные характеристики усилительного звена.КЧХ: W(jω)=k AЧХ: А(ω)=к; ФЧХ: φ(ω)=0 на всех частотах.
Рис 9.1 Динамические и частотные характеристики усилительного звена 2) Апериодическое звено I-го порядка Звено, в котором при скачкообразном изменении входной величины выходная величина апериодически (по экспоненте) стремится к новому установившемуся значению, называется апериодическим (инерционным). Пример (рис. 9.2):
Рис. 9.2. Примеры инерционных звеньев Дифференциальное уравнение звена имеет вид: (1) где Т – постоянная времени [c], k – коэффициент передачи. Операторное уравнение звена:
Тогда передаточная функция звена: . Переходная функция звена: Весовая функция звена:
Рис 9.3 Временные характеристики инерционного звена Постоянная времени Т представляет собой интервал времени, в течение которого выходная величина достигла бы своего нового установившегося значения, если бы она изменялась с постоянной скоростью, равной скорости её изменения в начальный момент времени после поступления на вход единичного входного сигнала. Чем >Т тем медленнее переходный процесс. Теоретически, переходный процесс в апериодическом звене длится бесконечно долго. Под временем переходного процесса понимают промежуток времени, по истечении которого входная величина достигнет 0,95 от установившегося значения. При t=3T , т.е . При t=T
Т можно определить как время, за которое входная величина изменяясь от 0 достигла 0,63 от установившегося значения, при подаче на вход звена единичного ступенчатого воздействия. Для весовой функции при t=T: . Получим частотные характеристики звена. КЧХ: - АЧХ - ФЧХ В §.8. определяли ВЧХ и МЧХ: ; Построим асимптотическую ЛАХ звена: (2) Для построения уравнения асимптот рассмотрим следующие интервалы частот: 1. При малых частотах ωT<<1 или ω<<(1/Т),1/Т – частота сопряжения. Пренебрегаем величиной в (2), тогда уравнение первой асимптоты имеет вид: (0 дб/дек) 2. При частотах ω>>(1/Т) пренебрегаем 1 в (2), тогда получим уравнение второй асимптоты: (-20 дб/дек) Рис. 9.5. Асимптотическая ЛАХ звена Если построить действительную ЛАХ по уравнению (2), то наибольшая погрешность будет на частоте . Определим ΔL(ω): дБ.
Дата добавления: 2014-10-15; Просмотров: 706; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |