КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вопросы для самопроверки. 1.1. Задача об объеме цилиндрического тела
КРАТНЫЕ ИНТЕГРАЛЫ 1. Двойной интеграл 1.1. Задача об объеме цилиндрического тела. 1.2. Двойной интеграл и его основные свойства. 1.3. Вычисление двойных интегралов в декартовых координатах. 1.4. Замена переменных в двойном интеграле. Переход от декартовых координат к полярным. 1.5. Приложение двойного интеграла для решения задач геометрии и физики.
Литература , гл. ХIV, §1, 2, упр. 1, 4-6; §3, упр. 8-10, 15, 17; §4, упр. 24, 25, 32; §5, 6, упр. 18-20, 28; §7, упр. 43, 46, 48; §9, упр.59, 60; §10, упр. 53, 54.
1. Что называется двойным интегралом от функции f(x; y) по области D? Укажите его геометрический смысл. 2. Сформулируйте теоремы о двойном интеграле от суммы и вынесении постоянного множителя за знак двойного интеграла. Докажите, что , где . 3. Что называется двукратным интегралом от функции f(x; y) по области D? Как он вычисляется? 4. Докажите теорему о среднем для двойного интеграла, укажите ее геометрический смысл. 5. Выведите формулу для вычисления двойного интеграла с помощью двукратного. Дайте геометрическое толкование формулы в случае неотрицательной подынтегральной функции. 6. Обоснуйте формулы, служащие для вычисления объема цилиндрического тела и площади плоской фигуры с помощью двойных интегралов. 7. Выведите формулу для вычисления двойного интеграла в полярных координатах. 8. Каков геометрический смысл интеграла , 9. Каков механический смысл интеграла , 10. Выведите формулу для вычисления координат центра тяжести плоской фигуры D, поверхностная плотность которой .
Дата добавления: 2014-10-15; Просмотров: 560; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |