КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Прочность и вязкость дисперсных систем
Свободнодисперсные жидкообразные системы обладают вязкостью и способны течь. Вязкие тела текут при любом напряжении сдвига Pτ, которое выражается уравнением Pτ= F/B, (11.4) где F — сила вязкого сопротивления; В — площадь, на которую распространяется действие этой силы. Течение вязких тел определяется законом Ньютона: (11.5) где η — коэффициент вязкости; dy/dt — изменение деформации во времени (скорость деформации). Если обозначить скорость деформации через g, то в соответствии с формулой (11.5) вязкость системы равна η = Pτ/. (11.6) Вязкость свободнодисперсных систем растет по мере увеличения концентрации дисперсной фазы. Присутствие частиц дисперсной фазы приводит к искажению потока жидкости вблизи этих частиц, что влияет на вязкость дисперсной системы. Если концентрация незначительна, то столкновение частиц исключается, и характер движения жидкости около одной из частиц повлияет на движение жидкости вблизи других. В этих условиях для определения вязкости свободнодисперсных систем можно воспользоваться формулой Эйнштейна η = η0(1 + к v об); η/η0= 1 + к v об, (11.7) где η, η0— коэффициент вязкости свободнодисперсной системы и дисперсионной среды; к — коэффициент, зависящий от формы частиц, для сферических частиц к = 2,5; v об— объемная концентрация дисперсной фазы, определяемая по формуле (1.10). В соответствии с формулой (11.7) вязкость свободнодисперсной системы увеличивается по мере роста объемной концентрации частиц дисперсной фазы. Вязкость золя коллоидов диффузионного сока при производстве сахара в зависимости от массовой концентрации изменяется следующим образом:
Массовая концентрация, 10–2г/м3, 0,54 1,31 1,62 Вязкость, 103Па∙с 1,109 1,291 1,150 При увеличении массовой концентрации примерно в 1,5 раза вязкость увеличивается всего в 0,4 раза. Согласно формуле Эйнштейна вязкость раствора не зависит от размеров частиц сферической формы, если они меньше размеров прибора, определяющего вязкость, и намного больше размеров молекул дисперсионной среды. Впоследствии была показана справедливость этой формулы для частиц, имеющих форму эллипсоида, диска, гантели и других трехмерных частиц; для таких частиц изменяется лишь численное значение коэффициента к. Формула Эйнштейна справедлива при отсутствии деформации частиц, если концентрация дисперсной фазы не превышает 6%. При увеличении объемной концентрации сферических частиц до 30% в условиях взаимного столкновения частиц для определения вязкости можно воспользоваться следующей формулой: η = η0(1 + 2,5 v об+ 14,7 v 2об). (11.8) Эта формула отличается от формулы Эйнштейна последним членом. Существует ряд других формул, позволяющих с достаточной степенью точности определить вязкость свободнодисперсных систем в зависимости от концентрации и формы частиц дисперсной фазы. При сопоставлении формул (11.7) и (11.8) видно, что по мере увеличения концентрации дисперсной фазы линейная зависимость между вязкостью и концентрацией нарушается. Тем не менее, вязкость подобных систем при данной концентрации остается постоянной. Подобные системы называют ньютоновскими (в отличие от неньютоновских). Течение и вязкость неньютоновских жидкостей, которые называют еще аномальными жидкостями, зависят от внешнего воздействия (напряжения сдвига). Вязкость является величиной переменной для данной концентрации и уже не определяется соотношением (11.5) или (11.6). Рассмотрим особенности движения структурированных твердообразных систем (рис. 11.5). На этом рисунке показана зависимость вязкости и скорости движения (или скорости деформации) от внешнего напряжения. Рис. 11.5. Зависимость скорости течения v (а) и коэффициента вязкости h (б) от внешнего усилия Р: Р r— предел прочности; Р к1— предел упругости; Р к2— условный (бингамовский) предел прочности; Р m— напряжение, соответствующее полному разрушению структуры; hmax— наибольшая вязкость практически неразрушенной структуры; hmin— наименьшая вязкость предельно разрушенной структуры; 1 — для жидкообразных тел
Кривые η = f (P) (см. рис. 11.5, б), называют полными реологическими кривыми течения структурированных дисперсных систем. Каждое значение вязкости на этих кривых соответствует равновесному состоянию этих систем (в том числе в случае их разрушения) в стационарном ламинарном потоке. Возможны четыре состояния структурированных дисперсныхсистем, соответствующие четырем участкам кривых, изображенных на рис. 11.5. Участок I соответствует условию 0 < Р < Рк1(Рк1— предел упругости). В этом состоянии течение отсутствует, и внешнее воздействие не может нарушить прочность системы. При дальнейшем увеличении напряжения, когда Р > Рк1, система начинает течь (участок II). Скорость перемещения в этом случае незначительна, связи между частицами после их разрушения успевают вновь восстановиться. Структура не разрушается, наблюдается лишь перемещение частиц относительно друг друга. Подобное перемещение называют ползучестью. Вязкость системы в условиях ползучести будет наибольшая, практически она будет соответствовать вязкости неразрушенной структуры. Так, для конфетной массы типа «Батончики» при давлении 105Па (1 атм) и температуре 301 К вязкость равна 800 Па∙с, т.е. она в 8∙105раз превышает вязкость воды. Скорость движения системы в условиях ползучести определяется по формуле v = кP/η, (11.9) где к — коэффициент, характеризующий структурные особенности дисперсной системы. Третье состояние дисперсной системы характеризуется процессом разрушения структуры при напряжении, равном пределу прочности Рr. Необратимое разрушение структуры начинается на границе участков II и III, а на границе участков III и IV оно заканчивается. В этом состоянии дисперсной системы связи между частицами не восстанавливаются, вязкость снижается, а скорость движения системы увеличивается. Для этого случая скорость движения системы определяется при помощи следующей формулы: (11.10) На участке IV структура разрушена полностью (или образуются отдельные агрегаты частиц, ориентированные в потоке). Вязкость в этом состоянии становится постоянной, а ее значение — минимальным (ηmin). Скорость движения системы с разрушенной структурой увеличивается пропорционально внешнему воздействию Р. Напряжение, характеризующее потерю прочности и полное разрушение структуры, обычно обозначают через Рm. Напряжение Рк2можно определить, если продолжить прямую участка IV (см. рис. 11.5, а) до пересечения с осью абсцисс. Величину Рк2называют условным (бингамовским) пределом, прочности. Следует подчеркнуть, что на рис. 11.5 приведены реологические кривые течения твердообразных тел, когда соблюдается условие (11.3). Скорость перемещения жидкообразных тел в зависимости от внешнего воздействия показана на рис. 11.5, а [пунктирная кривая 1, проходящая через начало координат в соответствии с условием (11.2)]. При отсутствии структуры скорость была бы пропорциональна внешнему давлению, что соответствует линейной зависимости между v и Р (пунктирная прямая 1 2 на рис. 11.5, а). Такая зависимость характерна для ламинарного течения ньютоновской жидкости. Вязкость структурированных систем определяется скоростью движения этих систем и тем внешним воздействием, которое заставляет систему течь. Вязкость является величиной переменной и изменяется от максимального ηmaxдо минимального ηminзначения. С увеличением внешнего воздействия происходит нарушение, а затем полное разрушение структурированной системы, что сопровождается уменьшением вязкости. Минимальная вязкость достигается тогда, когда структура связнодисперсной системы полностью разрушается. Вязкость свободнодисперсных систем (в отсутствие деформации самих частиц) является величиной постоянной и не зависит от скорости течения и внешнего воздействия. Структурированные связнодисперсные системы обладают аномальной вязкостью, которая определяется внешним воздействием. Если такого воздействия нет или оно незначительно (участок I на рис. 11.5, б), то структура сохраняется и течение отсутствует. В отличии от истинных ньютоновских жидкостей, течение которых описывается уравнениями (11.4) и (11.5), а их вязкость является величиной постоянной, вязкость структурированных жидкообразных систем зависит от внешнего воздействия в интервале Рm< Р < Рr. Подобные структурированные системы называют неньютоновскими (бингамовскими) жидкостями. Подсолнечное масло является жидкообразной структурированной системой. Изменение вязкости подсолнечного масла в зависимости от скорости деформации dg/dt [см. формулу (11.5)] характеризуется следующими данными:
Скорость деформации, с–1 0,4 10,4 200,4 3255,0 Вязкость, Па∙с 35,6 1,78 0,11 0,03 Из приведенных данных следует, что вязкость подсолнечного масла может изменяться в 104раз. Изменение вязкости широко используется на практике. Для перекачки связнодисперсных систем необходимо создать такую скорость, которая соответствовала бы минимальной вязкости. Это позволит осуществлять транспортировку продукта по трубопроводу с минимальными затратами внешнего усилия. При перевозке в емкости, наоборот, требуется, чтобы продукт был структурированным и имел максимальную вязкость.
Дата добавления: 2014-10-15; Просмотров: 2144; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |