КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Передаточная функция
Решение дифференциального уравнения (2.2) можно получить не только классическим методом, но также с использованием операционного исчисления, в основе которого лежит преобразование (интеграл) Лапласа. Преобразование Лапласа представляет собой преобразование некоторой функции вещественной переменной в другую функцию комплексной переменной ,осуществляемое путем интегрирования , где исходная функцияназывается оригиналом, а результат преобразования – изображением, – оператор Лапласа. Существует соответствие между операциями с оригиналами и с изображениями. Так, -кратному дифференцированию оригинала соответствует умножение изображения на , а -кратному интегрированию оригинала в пределах от 0 до соответствует деление изображения на . Функция-оригинал обладает следующими свойствами: · определена и кусочно-дифференцируема на всей положительной числовой оси; · при ;
Для определения функции-оригинала по известному изображению применяют формулу обратного преобразования Лапласа Максимальная величина , при которой выполняется это неравенство, называется абсциссой абсолютной сходимости. В АСУ мы обычно имеем дело с функциями, для которых перечисленные выше условия выполняются. Выражения изображений Лапласа для некоторых элементарных функций приведены в табл.2.1. Более полные таблицы даны в справочной литературе. Таблица 2.1 Изображения некоторых элементарных функций Передаточной функцией (в форме изображений Лапласа) называют отношение изображения выходной величины к изображению входной величины при нулевых начальных условиях . (2.5) Введём для операции дифференцирования обозначение , т.е. . В операторной форме уравнение (2.2) имеет вид (2.6) где – оператор дифференцирования. Передаточной функцией системы в операторной форме называют отношение (2.7) Передаточная функция определяет динамические характеристики системы или отдельных её элементов. Итак, передаточная функция в форме изображений по Лапласу , где , – полиномы числителя и знаменателя, характеризует систему в области изображений по Лапласу (рис. 2.12). Рис.2.12. Модель системы (звена) в области изображений по Лапласу
Для линейных систем при нулевых начальных условиях нет необходимости переходить в область изображений, а систему (звено) можно представить блоком , как показано на рис. 2.13, и считать, что этот блок осуществляет те же действия, что предусматриваются дифференциальным уравнением (2.6), записанным в операторной форме , т. е. – операторное звено во временной области.
Отметим, что (2.7) можно представить в виде отношения полиномов со свободными членами, равными единице , где – коэффициент передачи; ; . Свободные члены могут равняться и нулю, если, например, в системе имеется интегрирующее звено. Итак, для стационарных линейных звеньев (систем) при нулевых начальных условиях формально можно сделать подстановку , так как в этом случае дифференцированию оригинала – символическому умножению оригинала на – соответствует умножение изображения на комплексное число . Все свойства преобразования Лапласа применимы для операторной формы записи дифференциальных уравнений линейных стационарных систем при нулевых начальных условиях, т.е. можно для таких систем считать и тогда выражения (2.5) и (2.7) эквивалентны. В знаменателе передаточной функции (2.7) записано выражение, аналогичное левой части характеристического уравнения. Поэтому можно считать, что знаменатель передаточной функции есть характеристический полином дифференциального уравнения Корни характеристического уравнения , будучи подставленными в (2.7), обращают передаточную функцию в бесконечность и называются полюсами передаточной функции. Корни уравнения при подстановке в (2.7) обратят передаточную функцию в нуль и называются нулями передаточной функции.
Дата добавления: 2014-10-15; Просмотров: 1842; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |