Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Воспользовавшись известными записями формулы Эйлера




(2.10)

и , (2.11)

можем представить синусоидальный сигнал выражением

.

Тогда входную и выходную переменные можно представить в виде суммы экспоненциальных функций

На основании принципа суперпозиции прохождение через звено каждой составляющей сигнала можно рассматривать отдельно. Поэтому, обычно, пользуются символической записью гармонической функции

Тогда (2.12)

(2.13)

Отношение выходного сигнала к входному называется частотной передаточной функцией (её иногда называют просто частотной)

Пусть, например, звено описывается уравнением

(2.14)

которое соответствует передаточной функции

С учетом (2.13) запишем

После подстановки этих выражений в уравнение (2.14) получим

Отсюда частотная функция звена

Сравнение частотной функции с обычной показывает, что она может быть получена путём формальной замены операторана.

Частотную функцию можно представить в виде

,

или в показательной форме

.

В этих выражениях и соответственно действительная и мнимая части частотной функции; – модуль частотной функции (обозначают также ), а – её фаза. Легко показать (рис. 2.14), что модуль можно найти из выражения

,

а фазу из выражения

.

На комплексной плоскости (рис. 2.14) частотную передаточную функцию определяет годограф вектора , длина (модуль) которого равна , а аргумент (угол, образованный этим вектором с действительной положительной полуосью) . Кривую, которую описывает конец вектора при изменении частоты от 0 до ∞, называют амплитудно-фазовой характеристикой (АФХ). Таким образом, АФХ – это совмещённые АЧХ и ФЧХ.

 

Рис. 2.14. Построение АФХ по частотной функции

Итак, передаточная функция полностью определяет как статические, так и динамические свойства системы (звена). Она показывает, по какому закону тот или иной сигнал, поступивший на вход, преобразуется в выходной сигнал системы или звена.




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 419; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.