Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Модель Леонтьева межотраслевого баланса




Постановка задачи. Пусть имеется n отраслей промышленности, каждая из которых производит продукцию, которая идет как для внутреннего потребления данной отраслью и другими отраслями, так и для конечного личного или общественного потребления. Обозначим хi – общий (валовый) объем продукции i-отрасли, хij – объем продукции i-отрасли, потребляемой j-отраслью, yi – объем конечного продукта i-отрасли. Имеем соотношение баланса:

Введем коэффициенты прямых затрат . Если считать, что эти коэффициенты постоянны в течение некоторого периода времени, то xij = aij xj, и соотношение баланса примет вид:

 

или в матричном виде Х = А٠Х + У.

 

Задача состоит в нахождении такого вектора Х, который при известной матрице прямых затрат А обеспечивает конечный продукт У.

Решая полученное матричное уравнение, находим Х = (Е–А)–1 У.

Матрица (Е – А)–1 называется матрицей полных затрат.

Чтобы матричное уравнение было разрешимо, необходимо, чтобы матрица А была продуктивной. Есть несколько критериев продуктивности матрицы. Например, если максимум сумм элементов столбцов не более 1 и хоть одна сумма строго меньше 1, то матрица продуктивна.

Пример 1.9. Решение задачи поиска межотраслевого баланса [3, c. 99 – 104].

Имеется две отрасли производства, в таблице 1.9 указаны объёмы производства и потребления.

Таблица 1.9

Производство Потребление Конечный продукт Валовый продукт
Энергетика Маш.-ние
Энергетика          
Машиностроение          
                   

 

Необходимо вычислить объем валового выпуска продукции каждой отрасли, если конечный продукт 1-й отрасли должен увеличиться в 2 раза, 2-й на 20 %.

Из таблицы 1.9 имеем:

х1 = 500, х2 = 400, у1 = 240, у2 = 85, х11 = 100, х21 = 275, х12 =160, х22 = 40.

Построим матрицу прямых затрат:

а11 = = = 0,2; а12 = = = 0,4;

а21 = = = 0,55; а22 = = = 0,1.

А = , Е А = = .

Проверим матрицу А на продуктивность:

0,2 + 0,55 = 0,75 < 1, 0,4 + 0,1 = 0,5 < 1, т. е. матрица А продуктивна.

Найдем обратную к ней. Вычислим определитель:

0,8٠0,9 0,55٠ 0,4 = 0,5.

Тогда,

Вычислим по данным условия задачи новый вектор конечного продукта
У = (У1, У2):

У1 = 240٠2 = 480, У2 = 85 ٠(1+ 0,2) = 102. Имеем Унов =

Тогда Х = = .

1.15. В табице 1.10 приведены данные об исполнении баланса за отчетный период в усл. ден. ед.

Таблица 1.10

Отрасль Потребление Конечный продукт Валовый продукт
Сфера обслуживания Лёгкая пром-ть
Произ-водство Сфера обс-ния        
Лёгкая пром-ть        

Вычислить необходимый объем валового выпуска каждой отрасли, если конечное потребление сферы обслуживания увеличится вдвое, а лёгкой промышленности сохранится на прежнем уровне.

1.16. Продуктивна ли матрица А:

1) 2) .

1.17. Экономика разделена на три отрасли. В таблице 1.11 заданы коэффициенты прямых затрат и конечная продукция отраслей.

Таблица 1.11

Отрасль Потребление Конечный продукт
Сфера обслуживания Лёгкая пром-ть Сельское хоз.-во
Произ-водст-во Сфера обс-ния 0,3 0,25 0,2  
Лёгкая пром-ть 0,15 0,12 0,03  
Сельское хоз. 0,1 0,05 0,08  

 

Найти объем валовой продукции каждой отрасли, межотраслевые поставки, чистую продукцию отраслей.

1.18. Дана матрица полных затрат

Найти приращение валового выпуска ∆Х, обеспечивающее приращение конечной продукции ∆У = (10, 30, 20).

1.19. Отрасль состоит из 4-х предприятий; вектор выпуска продукции и матрица внутреннего потребления имеют вид:

 

Х = А =

Пользуясь моделью Леонтьева, найти вектор объемов конечного продукта, предназначенного для реализации вне отрасли.

1.20. Данные баланса трех отраслей промышленности за некоторый промежуток времени даны в таблице 1.12. Требуется найти объем валового выпуска каждого вида продукции, если конечное потребление увеличить соответственно:

1) до 60, 70 и 30 единиц;

2) на 30, 10 и 50%.

Решить задачу методом обратной матрицы.

Таблица 1.12

№ п/п Отрасль Потребление отрасли Конечный продукт   Валовый выпуск  
     
  Добыча и переработка углеводородов          
  Энергетика          
  Машиностроение          

Контрольные задания

Вариант 1.


1. Решить матричное уравнение:

.

 

2. Решить систему методом Крамера:


3. При каких значениях параметра к система не имеет решений, имеет бесконечно много:

4. Решить методом Гаусса:

Вариант 2.


1. Продуктивна ли матрица:

 

 

2. Решить систему матричным методом:


3. Решить методом Гаусса

4. Решить задачу.

В первенстве России по футболу Спартак и Динамо вместе набрали на 11 очков больше, чем удвоенное число очков ЦСКА, утроенное число очков Динамо на 2 очка меньше, чем сумма удвоенного числа очков Спартака и ЦСКА. Известно, что число очков, набранных каждой командой, лежит в диапазоне от 15 до 25. Найти количество набранных каждой командой очков.

Вариант 3.


1. При каком значении m матрица не имеет обратной:

2. Решить систему матричным методом:


3. Решить методом Гаусса:

4. При каких значениях параметров а, в, с система имеет решение
x = 2, y = 1, z = 3




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 1294; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.