КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Непрерывность функции в точке
Пример 2.2. Замечательные пределы Некоторые свойства пределов Предел и непрерывность функции
Определение. Число А называется пределом функции f (x) в точке х 0 (), если для любого сколь угодно малого числа ε > 0 найдется такое число δ = δ(ε) > 0, что для всех х ≠ х 0, удовлетворяющих условию | x – x 0|< δ, выполняется неравенство | f (x) – A| < ε. Определение. Число А называется пределом функции f (x) при х → ∞ (), если для любого сколь угодно малого числа ε > 0 найдется такое число М = М (ε) > 0, что для всех х, удовлетворяющих условию | x| > М, выполняется неравенство | f (x) – A| < ε.
Пусть Тогда: 1. 2. 3. Пример 2.1. 1) 2) 3) 4) 5) 6) 7) 2.8. Найти пределы:
5) ; 6); 7) ; 8) ; 9) ; 10) ; 11) ; 12) ; 13) ; 14) ; 15) ; 16) ; 17) ; 18) ; 19) ; 20) ; 21) ; 22) ; 23) ; 24) ; 25) ; 26) ; 27) ; 28) ; 29) ; 30) .
Замечательный предел № 1: Следствие 1. Следствие 2. Следствие 3.При sin k x ~ k x. Замечательный предел № 2: или 1) (1-ый способ). , т. к. при sin 2 x ~ 2 x (2-ой способ). т. к. при sin x/2 ~ x/2. т. к. при sin x ~ x. 2.9. Найти пределы: 1) ; 2) ; 3) ; 4) ; 5) ; 6) ; 7) ; 8) ; 9) ; 10) ; 11) ; 12) ; 13) ; 14) ; 15) ; 16) ; 17) 18) ; 19) ; 20) 21) ; 22) ; 23) ; 24) ; 25) 26) Определение. Функцияназывается непрерывной в точке если выполняются условия: 1. определена в точке х = а. 2. 3. Значение функции в точке х = а равно пределу в этой точке, т.е. Точки разрыва функции могут быть Ι рода (выполнено только условие 2 – «устранимый разрыв» или выполнено условие 1, причем в точке односторонние пределы конечны, но различны – «скачок») или ΙΙ рода (предел функции в точке не существует либо хотя бы один из односторонних пределов бесконечен).
Дата добавления: 2014-10-15; Просмотров: 397; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |