КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Размещения
Определение. Размещениями из n элементов по k (n ³ k) называют множество комбинаций из k элементов, выбираемых из n элементов, отличающихся составом или порядком. Число размещений из n элементов по k принято обозначать Пусть необходимо найти число размещений из n элементов по k. Существует n способов выбора первого элемента. После того как он выбран, остается (n − 1) способ выбора второго элемента. Для выбора третьего элемента остается (n − 2) способа, и вообще после выбора элементов от первого до (k − 1)-го остается (n – k + 1) способов для выбора k -го элемента. Таким образом, имеем Ank = n × (n − 1) × (n − 2) ×…× (n – k + 1). (3.3) Домножив и разделив правую часть формулы (3.3) на (n − k)!, получим: (3.4) Заметим, что понятие перестановок можно определить используя понятие размещений. Определение. Размещения из n элементов по n называются перестановками. Действительно, учитывая (3.3), имеем: Pn = Ann = n × (n − 1) × (n − 2) ×…× (n – n + 1) = n!. Используя формулу (3.4), получим тот же результат: С помощью данного соотношения легко объяснить, почему принято считать 0!=1. Пример 3.5. Сколько двухбуквенных комбинаций, не содержащих повторений, можно составить из 32 букв русского алфавита? В данной задаче необходимо найти число размещений из 32 элементов по 2 по формуле (3.3): двухбуквенных комбинаций. По данным «Словаря русского языка», из этих 992 комбинаций только 114 являются словами. Например, да, ад, еж, яр и т. д. Пример 3.6. Учащиеся 9 класса изучают 10 предметов. Сколькими способами можно составить расписание уроков на один день так, чтобы было 6 различных уроков? По условию задачи расписание на один день должно быть составлено из 6 различных уроков, а всего 10 предметов. Поскольку важен порядок расположения уроков в расписании (какой урок первый, какой − второй и т. д.), следовательно, необходимо найти число размещений из 10 элементов по 6. Таким образом, в соответствии с формулой (3.4) получим: 3.6. Сколько различных шестизначных телефонных номеров, не содержащих одинаковых цифр, можно составить из цифр: 1, 2, 3, 4, 5, 6, 7, 8 и 9? 3.7. В классе 25 учеников. Сколькими способами можно выбрать трех учащихся для участия в олимпиадах по математике, русскому языку и биологии? 3.8. В соревнованиях по бегу принимают участие 20 спортсменов. Сколькими способами могут быть распределены между участниками первое, второе и третье места? 3.9. Сколько различных трехбуквенных комбинаций можно составить из букв слова «гвоздика»?
Дата добавления: 2014-10-15; Просмотров: 724; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |